Список литературы
Шестакова М.В., Скляник И.А., Дедов И.И. Возможна ли длительная ремиссия или излечение сахарного диабета 2-го типа В XXI веке? Терапевтический архив. 2017; 10: 4-11.
Титов В.Н., Рожкова Т.А., Амелюшкина В.А. Жирные кислоты, триглицериды, гипертриглицеридемия, гипергликемия и инсулин. М.: ИНФРА-М; 2016.
Bar-Yoseph F., Lifshitz Y., Cohen T., Malard P., Xu C. SN2-palmitate reduces fatty acid excretion in chinese formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 2016; 62(2): 341-7.
Park S.E., Park C.Y., Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit. Rev. Clin. Lab. Sci. 2015; 52(4): 180-90.
Akash M.S.H., Rehman K., Liaqat A., Numan M., Mahmood Q., Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed. Pharmacother. 2018; 106: 285-91.
Maréchal L., Laviolette M., Rodrigue-Way A., Sow B., Brochu M., Caron V., Tremblay A. The CD36-PPARγ pathway in metabolic disorders. Int. J. Mol. Sci. 2018; 19(5). pii: E1529.
Астафьева Л.И., Кадашев Б.А., Калинин П.Л., Кутин М.А., Клочкова И.С. Клинические синдромы сдавленного и хирургически пересеченного стебля гипофиза. Проблемы эндокринологии. 2018; 64(1): 4-13.
Титов В.Н. Клиническая биохимия. Курс лекций. М.: ИНФРА-М; 2017.
Nolan C.J., Madiraju M.S., Delghingaro-Augusto V., Peyot M.L., Prentki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes. 2006; 55 Suppl 2: S16-23.
Athyros V.G., Doumas M., Imprialos K.P., Stavropoulos K., Georgianou E. Diabetes and lipid metabolism. Hormones (Athens). 2018; 17(1): 61-7.
Лисицын Д.М., Разумовский С.Д., Тишенин М.А., Титов В.Н. Кинетические параметры окисления озоном индивидуальных жирных кислот. Бюллетень экспериментальной биологии и медицины. 2004; 138(11): 517 — 9.
Сажина Н.Н., Титов В.Н., Евтеева Н.М., Ариповский А.В. Изменение суммарной ненасыщенности жирных кислот липидов плазмы крови больных артериальной гипертензией в глюкозотолерантном тесте. Патологическая физиология и экспериментальная терапия. 2016; 60(2): 74 — 80.
Putti R., Migliaccio V., Sica R, Lionetti L. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source. Front. Physiol. 2016; 6: 426.
Lee B.C., Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim. Biophys. Acta. 2014; 1842(3): 446-62.
Титов В.Н. Метаболический синдром — переедание физиологичной пищи. Висцеральные жировые клетки, неэтерифицированные и свободные жирные кислоты. М.: ИНФРА-М; 2017
Eibisch M., Popkova Y. Süß R. Schiller J. Dannenberger D. Evaluation of a commercial enzymatic test kit regarding the quantitative analysis of different free fatty acids. Anal. Bioanal. Chem. 2014; 406(28): 7401-5.
Best C.A., Laposata M. Proios V.G., Szczepiorkowski Z.M. Method to assess fatty acid ethyl ester binding to albumin. Alcohol. 2006; 41(3): 240-6.
Kassaar O., Schwarz-Linek U., Blindauer C.A., Stewart A.J. Plasma free fatty acid levels influence Zn(2+) -dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin. J. Thromb. Haemost. 2015; 13(1):101-10.
Zmysłowska A., Wyka K. Szadkowska A., Mianowska B., Pietrzak I., Młynarski W. Free fatty acids level may effect a residual insulin secretion in type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2011; 17(1): 26-9.
Шноль С.Э. Физико-химические факторы биологической эволюции. М.: Наука; 1979
Hoeks J., de Wilde J., Hulshof M.F., Berg S.A., Schaart G., Dijk KW. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance. PLoS One. 2011; 6(11): e27274.
Al-Sulaiti H., Diboun I., Banu S., Al-Emadi M., Amani P., Harvey T.M. Triglyceride profiling in adipose tissues from obese insulin sensitive, insulin resistant and type 2 diabetes mellitus individuals. J. Transl. Med. 2018; 16(1): 175.
Young S.G., Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes. Dev. 2013; 27(5): 459-84.
Martins A.R., Nachbar R.T., Gorjao R., Vinolo M.A., Festuccia W.T., Lambertucci R.H., Cury-Boaventura M.F. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids. Health. Dis. 2012; 11: 30.
Samuel V.T., Shulman G.I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 2016; 126(1): 12-22.
Rachek L.I. Free fatty acids and skeletal muscle insulin resistance. Prog. Mol. Biol. Transl. Sci. 2014; 121: 267-92.
Wan G.X., Xia W.B., Ji L.H., Qin H.L., Zhang Y.G. Triglyceride to high density lipoprotein cholesterol ratio may serve as a useful predictor of major adverse coronary event in female revascularized ST-elevation myocardial infarction. Clin. Chim. Acta. 2018; 485: 166-72.
Ishiyama N., Sakamaki K., Shimomura Y., Kotani K., Tsuzaki K., Sakane N., Miyashita K. Lipoprotein lipase does not increase significantly in the postprandial plasma. Clin. Chim. Acta. 2017; 464: 204-10.
Nakajima K., Tokita Y., Tanaka A. Hypothesis: Postprandial remnant lipoproteins are the causal factors that induce the insulin resistance associated with obesity. Clin. Chim. Acta. 2018; 485: 126-32.
Nakajima K., Nakano T., Tokita Y., Nagamine T., Inazu A., Kobayashi J. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin. Chim. Acta. 2011; 412(15-16): 1306-18.
Subramanian S., Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta. 2012; 1821(5): 819-25.
Duez H., Lamarche B., Uffelman K.D., Valero R., Cohn J.S., Lewis G.F. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 2006; 26(6): 1357-63.
Aljuaid M.O., Almitairi A.M., Assiri M.A., Almalki D.M., Alswat K. Diabetes-related distress assessment among type 2 diabetes patients. J. Diabetes. Res. 2018; 2018: 7328128.
Low S., Khoo K.C.J., Irwan B., Sum C.F., Subramaniam T., Lim S.C., Wong T.KM. The role of triglyceride glucose index in development of Type 2 diabetes mellitus. Diabetes. Res. Clin. Pract. 2018; 143: 43-9.
Roduet R., Nolan C., Alarcon C., Moore P., Barbeau A., Delghingaro-Augusto V., Przybykowski E. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes. 2004; 53(4): 1007-19.
Fairchild T.J., Klakk H., Heidemann M., Grøntved A., Wedderkopp N. Insulin sensitivity is reduced in children with high body-fat regardless of BMI. Int. J. Obes. (Lond). 2018; 42(5): 985-94.
Смирнов Г.П., Малышев П.П., Рожкова Т.А., Зубарева М.Ю., Шувалова Ю.А., Ребриков Д.В., Титов В.Н. Влияние распространенного варианта RS 2230806 гена АБСА 1 на уровни липидов плазмы у пациентов с дислипидемией. Клиническая лабораторная диагностика. 2018; 63(7): 410-3
Mehanna E.T., Barakat B.M., El-Sayed M.H., Tawfik M.K. An optimized dose of raspberry ketones controls hyperlipidemia and insulin resistance in male obese rats: Effect on adipose tissue expression of adipocytokines and Aquaporin 7. Eur. J. Pharmacol. 2018; 832: 81-9.
Florentino T.V., Sesti F., Succurro E., Pedace E., Andreozzi F., Sciacqua A., Hribal M.L. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta. Diabetol. 2018; 55(8): 835-42.