Список литературы
Fechner P., Bleher O., Ewald M., Freudenberger K., Furin D., Hilbig U. et al. Size does matter! Label-free detection of small molecule-protein interaction. Anal. Bioanal. Chem. 2014; 406: 4033-51.
Poroikov V. V., Filimonov D. A., Ihlenfeldt W.D. et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inform Comput Sci. 2003; 4(1): 228-36.
Kuhn M., Szklarczyk D., Franceschini A., Campillos M., von Mering C., Jensen L. J. et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic acids research. 2010; 38(Database issue): D552-6.
Li X., Wang X., Snyder M. Systematic investigation of protein-small molecule interactions. IUBMB Life. 2013; 65(1): 2-8.
Lorendeau D., Christen S., Rinaldi G., Fendt S.M. Metabolic control of signaling pathways and metabolic auto-regulation. Biol. Cell. 2015; 107(8): 251-72.
Wagner S.A., Beli P., Weinert B.T., Nielsen M.L., Cox J., Mann M. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics. 2011; 10(10): M111.013284.
Prentki M., Madiraju S.R. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol. Cell Endocrinol. 2012; 28;353(1-2): 88-100.
Brito S.C., Festuccia W.L., Kawashita N.H., Moura M.F., Xavier A.R., Garofalo M.A. et al. Increased glyceroneogenesis in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet: role of dietary fatty acids. Metabolism. 2006; 55(1): 84-9.
Vander Heiden M.G. Targeting cancer metabolism: a therapeutic window. Nat. Rev. Drug Discov. 2011; 31;10(9): 671-84.
Possik E., Madiraju SRM., Prentki M. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie. 2017; 43:18-28.
Compagno C., Brambilla L., Capitanio D., Boschi F., Ranzi B.M., Porro D. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant. Yeast. 2001; 18(7): 663-70.
Green D.E. Alpha-Glycerophosphate dehydrogenase. Biochem. J. 1936; 30(4): 629-44.
Mracek T., Drahota Z., Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys.Acta. 2013; 1827(3): 401-10.
Kota V., Rai P., Weitzel J.M., Middendorff R., Bhande S.S., Shivaji S. Role of glycerol-3-phosphate dehydrogenase 2 in mouse sperm capacitation. Mol. Reprod. Dev. 2010; 77(9): 773-83.
Myatt L., Cui X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004; 122(4): 369-82
Schuit F., De Vos, A., Farfari S., Moens K., Pipeleers D., Brun T. et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 1997; 25;272(30): 18572-9.
McCommis K.S., Finck B.N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J. 2015; 15;466(3): 443-54.
Rui L. Energy Metabolism in the Liver. Compr Physiol. 2014; 4(1): 177-97.
Herzig S., Raemy E., Montessui S., Veuthey J.L., Zamboni N., Westermann B. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012; 6;337(6090): 93-6.
Patterson J.N., Cousteils K., Lou J.W., Manning Fox J.E., Macdonald P.E., Joseph J.W. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion. J. Biol. Chem. 2014; 9;289(19): 13335-46.
Schroeder M.A., Lau A.Z., Chen A.P., Gu Y., Nagendran J., Barry J. et al. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur. J. Heart Fail. 2013; 15(2): 130-40.
Johnson A.C.M., Zager R.A. Pyruvate Acute kidney injury. Injury-induced depletion. Nephron Clin.Pract. 2014; 127: 129-32.
Upadhay M., Samal J., Kandpal M., Singh O.V., Vivekanandan P. The Warburg effect: insights from the past decade. Pharmacol Ther. 2013; 137(3): 318-30.
Liu R., Hu X.H., Wang S.M., Guo S.J., Li Z.Y., Bai X.D. et al. Pyruvate in oral rehydration salt improves hemodynamics, vasopermeability and survival after burns in dogs. Burns. 2016; 42(4): 797-806.
Hu S., Lin Z.L., Zhao Z.K., Liu R., Ma L., Luo H.M. et al. Pyruvate is superior to citrate in oral rehydration solution in the protection of intestine via hypoxia-inducible factor-1 activation in rats with burn injury. J. Parenter Enter. Nutr. 2016; 40(7): 924-33.
Rogatzki M.J., Ferguson B.S., Goodwin M.L., Gladden L.B. Lactate is always the end product of glycolysis. Front Neurosci. 2015; 27(9): 22.
Miller B.F., Fattor J. J., Ka H., Ma Navazio F., Lindinger M.I., Brooks G.A. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J. Physiol. 2002; 1;544(3): 963-75.
Roef M.J., De Meer K., Kalhan S.C., Straver H., Berger R., Reijngoud D.J. Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise. Am. J. Physiol. Endocrinol. Metab. 2003; 284(6): E1162-71.
Halestrap A.P. Monocarboxylic acid transport. Compr. Physiol. 2013; 3(4): 1611-43.
Brooks G.A. Energy flux, lactate shuttling, mitochondrial dynamics, and hypoxia. Adv. Exp. Med. Biol. 2016; 903: 439-55.
San-Millоn I., Brooks G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017; 1;38(2): 119-33.
Nelson D.L., Cox M.M., Lehninger A.L. Lehninger principles of biochemistry. New York: W.H. Freeman; 2013.
Campos F., Sobrino T., Ramos-Cabrer P., Castillo J. Oxaloacetate: a novel neuroprotective for acute ischemic stroke. Int. J. Biochem Cell Biol. 2012; 44(2): 262-5.
Springsteen G., Yerabolu J.R., Nelson J., Rhea C.J., Krishnamurthy R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 2018; 8;9(1): 91.
Hakimi P., Yang J., Casadesus G., Massillon D., Tolentino-Silva F., Nye C.K. et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolismin the mouse. J. Biol. Chem. 2007; 9;282(45): 32844-55.
Minarik P.N., Tomakova M., Kollarova М., Antalik M. Malate Dehydrogenases — Structure and Function Gen. Physiol. Biophys. 2002; 21(3): 257-65.
Lu, M., Zhou L., Stanley W.C., Cabrera M.E., Saidel G.M., Yu X. Role of the Malate-Aspartate Shuttle on the Metabolic Response to Myocardial Ischemia. Journal of Theoretical Biology. 2008; 21;254(2): 466-75.
Wang C., Chen H., Zhang J., Hong Y., Ding X., Ying W. Malate-aspartate shuttle mediates the intracellular ATP levels, antioxidation capacity and survival of differentiated PC12 cells. Int J Physiol Pathophysiol Pharmacol. 2014; 12;6(2): 109-14.
Pardo B., Contreras L., Satrústegui J. De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Front Endocrinol. (Lausanne). 2013; 15 (4): 149.
Swerdlow R.H., Bothwell R., Hutfles L., Burns J.M., Reed G. Tolerability and pharmacokinetics of oxaloacetate 100 mg capsules in Alzheimer’s subjects. BBA Clinical. 2016; 10;5: 120-3.