Список литературы
National Burn Repository 2019 Update, Report of data from 2009-2018 ameriburn.siteym.com.2019.https://ameriburn.siteym.com/store/ViewProduct.aspx?id=14191872
Алексеев А.А., Тюрников Ю.И. Основные статистические показатели работы медицинских организаций России по оказанию специализированной медицинской помощи пострадавшим от ожогов в 2017-2018 гг. Всероссийский симпозиум с международным участием «Инновационные технологии лечения ожогов и ран: достижения и перспективы» 22-23 ноября 2018 года. Комбустиология. 2018. Электронный научно-практический журнал. № 61/2018. https://combustiolog.ru/journal/sborniknauchny-h-rabot-chast-pervaya/
Zhang P., Zou B., Liou Y.C., Huang C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma. 2021; 9: tkaa047. https://doi.org/10.1093/burnst/tkaa047
Глуткин А.В., Ковальчук В.И. Термический ожог кожи у детей раннего возраста (опыт эксперимента и клиники): монография. Гродно: Гродненский госмедуниверситет; 2016
Boehm D., Menke H. Sepsis in Burns — Lessons Learnt from Developments in the Management of Septic Shock. Medicina. 2021; 58(1): 26. https://doi.org/10.3390/medicina58010026
Donnelly J.P., Chen S.C., Kauffman C.A., Steinbach W.J., Baddley J.W., Verweij P.E. et al. Revision and update of the consensus definitions of invasive fungal disease from the european organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin. Infect. Dis. 2020; 71(6): 1367-76. https://doi.org/10.1093/cid/ciz1008
Иваненко И.Л., Гладилин Г.П., Шулаева Н.М., Островский Н.В., Никитина В.В., Веретенников С.И., Калинычева А.Е. Прогностическое значение гемокоагуляционных тестов у пациентов с тяжелыми ожогами. Современные проблемы науки и образования. 2016; 2. https://science-education.ru/ru/article/view?id=24154
Evers L.H., Bhavsar D., Mailänder P. The biology of burn injury. Exp. Dermatol. 2010; 19(9): 777-83. https://doi.org/10.1111/j.1600-0625.2010.01105.x
Ravat F., Payre J., Peslages P., Fontaine M., Sens N. Burn: an inflammatory process. Pathol. Biol. (Paris). 2011; 59:e63-72.
Moins-Teisserenc H., Cordeiro D.J., Audigier V., Ressaire Q., Benyamina M., Lambert J. et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Front Immunol. 2021; 12: 586195. https://doi.org/10.3389/fimmu.2021.586195
Porter C., Tompkins R.G., Finnerty C.C., Sidossis L.S., Suman O.E., Herndon D.N. The metabolic stress response to burn trauma: Current understanding and therapies. Lancet. 2016; 388(10052): 1417-26. https://doi.org/10.1016/S0140-6736(16)31469-6
Schwacha M.G. Macrophages and post-burn immune dysfunction. Burns. 2003; 29(1): 1-14. https://doi.org/10.1016/s0305-4179(02)00187-0
Herrmann J. Rescuing macrophage function following severe thermal injury. J. Surg. Res. 2009; 157(2): 158-60. https://doi.org/10.1016/j.jss.2009.04.023
Luo G., Peng D., Zheng J., Chen X., Wu J., Elster E.A., Tadaki D.K. The role of NO in macrophage dysfunction at early stage after burn injury. Burns. 2005; 31(2): 138-44. https://doi.org/10.1016/j.burns.2004.09.009
Laggner M., Lingitz M.T., Copic D., Direder M., Klas K., Bormann D. et al. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci. Rep. 2022; 12(1): 1654. https://doi.org/10.1038/s41598-022-05768-w
Gosain A., Gamelli R.L. A primer in cytokines. J. Burn. Care Rehabil. 2005; 26(1): 7-12. https://doi.org/10.1097/01.bcr.0000150214.72984.44
Городинская Н.А., Алейник Д.Я., Рубцова Ю.П., Чарыкова И.Н., Фролов А.П. Роль рецепторов врожденного иммунитета в патогенезе ожоговой болезни. Научное обозрение. Медицинские науки. 2014; 1: 92. https://science-medicine.ru/ru/article/view?id=120
Toth B., Alexander M., Daniel T., Chaudry I.H., Hubbard W.J., Schwacha M.G. The role of γδ T cells in the regulation of neutrophil-mediated tissue damage after thermal injury.J. Leukoc. Biol. 2004; 76(3): 545-52. https://doi.org/10.1189/jlb.0404219
Schwacha M.G., Ayala A., Chaudry I.H. Insights into the role of γδ T lymphocytes in the immunopathogenic response to thermal injury. J. Leukoc. Biol. 2000; 67(5): 644-50.
Kim A., Lang T., Xue M., Wijewardana A., Jackson C., Vandervord J. The Role of Th-17 Cells and γδ T-Cells in Modulating the Systemic Inflammatory Response to Severe Burn Injury.Int. J. Mol. Sci. 2017; 18(4): 758. https://doi.org/10.3390/ijms18040758
Sasaki J.R., Zhang Q., Schwacha M.G. Burn induces a Th-17 inflammatory response at the injury site. Burns. 2011; 37(4): 646-51. https://doi.org/10.1016/j.burns.2011.01.028
Rani M., Zhang Q., Schwacha M.G. Burn wound γδ T-cells support a Th2 and Th17 immune response. J. Burn. Care Res. 2014; 35(1): 46-53. https://doi.org/10.1097/01.bcr.0000440705.91099.cc
Rendon J.L., Choudhry M.A. Th17 cells: critical mediators of host responses to burn injury and sepsis. J. Leukoc. Biol. 2012; 92(3): 529-38. https://doi.org/10.1189/jlb.0212083
Hanschen M., Tajima G., O’Leary F., Ikeda K., Lederer J.A. Injury induces early activation of T-cell receptor signaling pathways in CD4+ regulatory T cells. Shock. 2011; 35(3): 252-7. https://doi.org/10.1097/SHK.0b013e3181f489c5
Huang L.-F., Yao Y.-M., Dong N., Yu Y., He L., Sheng Z. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit. Care. 2010; 14. R3. https://doi.org/10.1186/cc8232
Алексеев А.А., Ушакова Т.А., Крутиков М.Г., Бобровников А.Э. Маркеры сепсиса в диагностике адаптивного воспаления при ожоговой травме. Лечение и профилактика. 2015; 2(14): 84-91
Carlton M., Voisey J., Parker T.J., Punyadeera C., Cuttle L. A review of potential biomarkers for assessing physical and psychological trauma in paediatric burns. Burns trauma. 2021; 9; 9: tkaa049. https://doi.org/10.1186/cc8232
Boldeanu L., Boldeanu M.V., Bogdan M., Meca A.D., Coman C.G., Buca B.R., Tartau C.G., Tartau L.M. Immunological approaches and therapy in burns (Review). Exp. Ther. Med. 2020; 20: 2361-7. https://doi.org/10.3892/etm.2020.8932
Mohd J., Shah Y., Omar E., Pai D.R., Sood S. Cellular events and biomarkers of wound healing. Indian J. Plast. Surg. 2012; 45(2): 220-8. https://doi.org/10.4103/0970-0358.101282
Harding K.G., Morris H.L., Patel G.K. Science, medicine and the future: Healing chronic wounds. BMJ. 2002; 324(7330): 160-3. https://doi.org/10.1136/bmj.324.7330.160
Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med. Cell Longev. 2009; 2(5): 270-8. https://doi.org/10.4161/oxim.2.5.9498
Vinaik R., Abdullahi A., Barayan D., Jeschke M.G. NLRP3 inflammasome activity is required for wound healing after burns. Transl. Res. 2020; 217: 47-60. https://doi.org/10.1016/j.trsl.2019.11.002
Кривошапка А.В., Ермоленко Т.И. Провоспалительные цитокины в патогенезе экспериментального ожога. Харьков: Планета-Принт; 2018
Widgerow A.D., King K., Tussardi I.T., Banyard D.A., Chiang R., Awad A. The burn wound exudate — an under-utilized resource. Burns. 2015; 41(1): 11-7. https://doi.org/10.1016/j.burns.2014.06.002
Кузник В.И., Витковский Ю.А., Сазоненко В.А., Варфоломеев А.Р., Будажабон Г.Б. Влияние тималина на иммунитет, гемостаз и уровень провоспалительных и противовоспалительных цитокинов при ожоговой болезни. Гематология и трансфузиология. 2002; 47(1): 17-21
Homyrda L., Toubert A., Legrand M. Severe Altered Immune Status After Burn Injury Is Associated With Bacterial Infection and Septic Shock. Front. Immunol. 2021; 12: 586195. https://doi.org/10.3389/fimmu.2021
Finnerty C.C., Herndon D.N., Chinkes D.L., Jeschke M.G. Serum cytokine differences in severely burned children with and without sepsis. Shock. 2007; 27(1): 4-9. https://doi.org/10.1097/01.shk.0000235138.20775.36
Finnerty C.C., Herndon D.N., Przkora R., Pereira C.T., Oliveira H.M., Queiroz D.M. Cytokine expression profile over time in severely burned pediatric patients. Shock. 2006; 26(1): 13-9. https://doi.org/10.1097/01.shk.0000223120.26394.7d
Jeschke M.G., Gauglitz G.G., Kulp G.A., Finnerty C.C., Williams F.N, Kraft R. Long-term persistence of the pathophysiologic response to severe burn injury. PLoS One. 2011; 6(7): e21245. https://doi.org/10.1371/journal.pone.0021245
Jeschke M.G., Barrow R.E, Herndon D.N. Extended hypermetabolic response of the liver in severely burned pediatric patients. Arch. Surg. 2004; 139(6): 641-7. https://doi.org/10.1001/archsurg.139.6.641
Abdel-Hafez N.M., Saleh Hassan Y., El-Metwally T.H. A study on biomarkers, cytokines, and growth factors in children with burn injuries. Ann. Burns Fire Disasters. 2007; 20(2): 89-100.
Sherbet G.V. The epidermal growth factor (EGF) family. In: Sherbet G.V., ed. Growth Factors and Their Receptors in Cell Differentiation, Cancer and Cancer Therapy. London: Elsevier; 2011.
Tan J., Wu J. Current progress in understanding the molecular pathogenesis of burn scar contracture. Burns Trauma. 2017; 5: 14. https://doi.org/10.1186/s41038-017-0080-1
Rorison P., Thomlinson A., Hassan Z., Roberts S.A., Ferguson M.W., Shah M. Longitudinal changes in plasma transforming growth factor beta-1 and post-burn scarring in children. Burns. 2010; 36(1): 89-96. https://doi.org/10.1016/j.burns.2009.03.008
Tikhaeva K.Yu., Rogova L.N., Tkachenko L.V. The role of metalloproteinases in the metabolism of endometrial extracellular matrix proteins in normal and pathological conditions. Probl. Reproductions. 2020; 26(4): 22-9. https://doi.org/10.17116/repro20202604122
Laronha H., Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020; 9(5): 1076. https://doi.org/10.3390/cells9051076
Idrovo J.P., Yang W.L., Jacob A., Ajakaiye M.A., Cheyuo C., Wang Z., Prince J.M., Nicastro J., Coppa G.F., Wang P.Combination of adrenomedullin with its binding protein accelerates cutaneous wound healing. PLoS One. 2015; 10: e0120225. https://doi.org/10.1371/journal.pone.0120225
Park J.H., Choi S.H., Park S.J., Lee Y.J., Park J.H, Song P.H., Cho C.M, Ku S.-K, Song C.-H. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar. Drugs. 2017; 15(4): 112. https://doi.org/10.3390/md15040112
Xue M., Jackson C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care. 2015; 4(3): 119-36. https://doi.org/10.1089/wound.2013.0485
Utz E.R., Elster E.A., Tadaki D.K., Gage F., Perdue P.W., Forsberg J.A., Stojadinovic A., Hawksworth J.S., Brown T.S. Metalloproteinase expression is associated with traumatic wound failure. J. Surg. Res. 2010; 159(2): 633-9. https://doi.org/10.1016/j.jss.2009.08.021
Weremijewicz A., Matuszczak E., Sankiewicz A., Tylicka M., Komarowska M., Tokarzewicz A. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with surface Plasmon resonance imaging (SPRI) biosensors. Burns. 2018; 44(4): 931-40. https://doi.org/10.1016/j.burns.2017.12.001
Dasu M.R., Spies M., Barrow R.E., Herndon D.N. Matrix metalloproteinases and their tissue inhibitors in severely burned children. Wound Repair Regen. 2003; 11(3): 177-80. https://doi.org/10.1046/j.1524-475x.2003.11305.x
Luiking Y.C., Engelen M.P., Deutz N.E. Regulation of nitric oxide production in health and disease. Curr. Opin. Clin. Nutr. Metab.Care. 2010; 13(1): 97-104. https://doi.org/10.1097/MCO.0b013e328332f99d
Haycock J.W., Ralston D.R., Morris B., Freedlander E., MacNeil S. Oxidative damage to protein and alterations to antioxidant levels in human cutaneous thermal injury. Burns. 1997; 23(7-8): 533-40. https://doi.org/10.1016/s0305-4179(97)00072-7
Boykin J.V. Wound nitric oxide bioactivity: A promising diagnostic indicator for diabetic foot ulcer management. J. Wound Ostomy Continents Nurs. 2010; 37(1): 25-32. https://doi.org/10.1097/WON.0b013e3181c68b61
Звягинцева Т.В., Кривошапка А.В., Желнин Е.В. Роль метаболитов оксида азота в механизмах развития экспериментального ожога. Экспериментальная и клиническая медицина. 2011; 51(2): 5-9.
Крутиков М.Г. Проблемы инфекции у обожженных. Комбустиология. 2002. Электронный научно-практический журнал. №10/2002. https://combustiolog.ru/number_journal/nomer-10-2002/
Митряшов К.В., Шаркова В.А., Усов В.В., Максема И.Г., Грибань П.А. Разнообразие микробных сообществ ожоговых ран. Журнал Неотложная хирургия им. И.И. Джанелидзе. 2021; 1: 42-6.
Mulani M.S., Kamble E.E. , Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging strategies to combat ESCAPE pathogens in the era of antimicrobial resistance: a review. Front in Microbiol. 2019; 10539. https://doi.org/10.3389/fmicb.2019.00539
Privett B.J., Shinb J.H., Schoenfisch M.H. Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements. Chem. Soc. Rev. 2010; 39(6): 1925-35. https://doi.org/10.1039/b701906h