Аннотация
Цель работы — определение изменений, происходящих в показателях автоматизированного подсчета лейкоцитарной фор-
мулы крови при хранении образцов цельной крови в течение 3 дней при комнатной температуре (25 °C), охлаждении до 4
°C и нагревании до 35 °C. 60 проб цельной крови измеряли в режиме развернутого общего анализа крови с лейкоцитарной
формулой в различные временные точки: сразу после взятия крови и через 3, 6, 12, 24, 48 и 72 часов. Использовали вакуумные
пробирки с антикоагулянтом K2EDTA, результаты получены с применением гематологического анализатора UniCel DxH
800 (Beckman Coulter Inc., USA, Miami, FL). Изменения значений параметров относительно исходного уровня для каждой
комбинации времени и температуры оценивали с помощью теста совпадающих пар Уилкоксона.
Среди лейкоцитарных показателей относительное процентное и абсолютное количество нейтрофилов, базофилов и эозино-
филов при отсроченном исследовании проб крови имело тенденцию к увеличению, а моноцитов и лимфоцитов – к снижению.
При этом чем больше времени прошло от момента забора крови до проведения гемоцитометрии и чем выше была темпера-
тура хранения, тем значительнее были обнаруженные изменения.
На основании результатов данного исследования можно сделать заключение, что при использовании технологии VCS даже
через 12 ч от момента взятия крови результаты автоматизированного подсчета лейкоцитарной формулы могут быть не-
достоверными, если образец хранился при 25 °C или 4 °C, а при 35 °C отдельные лейкоцитарные параметры нестабильны
уже через 6 часов.
Annotation
The aim of the work was to determine the changes occurring in the parameters of automated counting of leukocyte blood formula
under the condition of storage of whole blood samples for 3 days at room temperature (25 °C), cooling to 4 °C and heating to 35 °C. 60
whole blood tubes were measured in the unfolded total blood count mode with leukocyte formula at different time points: immediately
after blood collection and then sequentially after 3, 6, 12, 24, 48, and 72 h. Vacuum tubes with anticoagulant K2EDTA were used, and
the results were obtained using a UniCel DxH 800 hematology analyzer. Changes in parameter values relative to baseline for each
combination of time and temperature were evaluated using the Wilcoxon matched pairs test.
Among the leukocytic parameters, the relative percentage and absolute number of neutrophils, basophils and eosinophils tended to
increase, while monocytes and lymphocytes tended to decrease. At the same time, the more time elapsed from the moment of blood
collection to hemocytometry and the higher the storage temperature was, the more significant were the changes detected.
Based on the results of this study, it can be concluded that when using VCS technology, even after 12 h from the time of blood collection
to the measurement of the total blood count, the automated leukocyte count report may contain an unreliable result if the sample was
stored at 25 or 4 °C. When tubes are stored at 35 °C, the stability of individual leukocyte parameters is already lost after 6 h.
Key words: sample stability; storage of whole blood tubes; hematological studies; hematological analyzers
Список литературы
1. Doeleman M.J., Esseveld A., Huisman A., de Roock S., Tiel Groenestege
W.M. Stability and comparison of complete blood count parameters
between capillary and venous blood samples. International journal
of laboratory hematology [Internet]. 2023 May 2; 45(5):659–67.
Available from: http://dx.doi.org/10.1111/ijlh.14080.
2. Unalli O., Ozarda Y. Stability of hematological analytes during 48
hours storage at three temperatures using Cell-Dyn hematology analyzer.
Journal of medical biochemistry [Internet]. 2021; 40(3):252–
60. Available from: http://dx.doi.org/10.5937/jomb0-27945.
3. Kadam P., Patil N., Mane V.P. Study of refrigerated storage of blood
at 4°C on automated hematological parameters and morphological
changes in peripheral blood smear: A prospective study. Indian journal
of pathology and oncology [internet]. 2023 Mar 15; 10(1):9–14.
Available from: http://dx.doi.org/10.18231/j.ijpo.2023.003.
4. Kayadibi H., Acar I.A., Cam S. Stability of complete blood count parameters
depends on the storage temperature, storage time, transport
position and selected stability criterion. Scandinavian journal of clinical
and laboratory investigation [internet]. 2020 Jun 28; 80(6):470–8.
Available from: http://dx.doi.org/10.1080/00365513.2020.1783570.
5. Tak T., Tesselaar K., Pillay J., Borghans J.A., Koenderman L. What’s
your age again? Determination of human neutrophil half-lives revisited.
Journal of leukocyte biology [internet]. 2013 Oct 1; 94(4):595–
601. Available from: http://dx.doi.org/10.1189/jlb.1112571.
6. Squier M.K., Sehnert A.J., Cohen J.J. Apoptosis in leukocytes. Journal
of leukocyte biology [internet]. 1995 Jan 1; 57(1):2–10. Available
from: http://dx.doi.org/10.1002/jlb.57.1.2.
7. Joshi A., McVicker W., Segalla R., Favaloro E., Luu V., Vanniasinkam
T. Determining the stability of complete blood count parameters in
stored blood samples using the SYSMEX XE5000 automated haematology
analyser. International journal of laboratory hematology
[internet]. 2015 Jun 6; 37(5):705–14. Available from: http://dx.doi.
org/10.1111/ijlh.12389.
8. Imeri F., Herklotz R., Risch L., Arbetsleitner C., Zerlauth M., Risch
G.M. et al. Stability of hematological analytes depends on the hematology
analyser used: A stability study with Bayer Advia 120, Beckman
Coulter LH 750 and Sysmex XE 2100. Clinica chimica acta
[internet]. 2008 Nov; 397(1–2):68–71. Available from: http://dx.doi.
org/10.1016/j.cca.2008.07.018.
9. Kennedy J.B., Machara K.T., Baker A.M. Cell and platelet stability
in disodium and tripotassium EDTA. American Journal of Medical
Technology. 1981 Feb; 47(2):89-93. PMID: 6784575.
10. Vives Corrons J., Briggs C., Simon Lopez R., Albarede S., de la Salle
B., Flegar Meatrii Z. et al. Effect of EDTA anticoagulated whole blood
storage on cell morphology examination. A need for standartization.
International journal of laboratory hematology [internet]. 2013 Dec
12; 36(2):222–6. Available from: http://dx.doi.org/10.1111/ijlh.12170.
11. Lestari A.A., Karyana I.P., Wande I.N. Difference in sodium and potassium
reading by blood gas analyzer and electrolyte analyzer at Sanglah
Hospital Denpasar, Bali, Indonesia. Journal of global pharma
technology. 2018; 10(7):44-48.
12. Saraste A. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular
research [internet]. 2000 Feb; 45(3):528–37. Available
from: http://dx.doi.org/10.1016/s0008-6363(99)00384-3.
13. WHO classification: tumours of the haematopoietic and lymphoid tissues
(2008). Postgraduate haematology [internet]. 2015 Nov 6; 885–
7. Available from: http://dx.doi.org/10.1002/9781118853771.ch51.
14. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Thiele
J. WHO classification of tumours of haematopoietic and lymphoid
tissues (revised 4th edition). lARC, Lyon: International agency for research
on cancer, 2017. 585 с.
15. Oztas B. Leukocyte stability in hemogram samples waiting at room
temperature. International journal of medical biochemistry [internet].
2020. Available from: http://dx.doi.org/10.14744/ijmb.2020.14622.
16. Gulati G.L., Hyland L.J., Kocher W., Schwarting R. Changes in automated
complete blood cell count and differential leukocyte count
results induced by storage of blood at room temperature. Archives
of pathology and laboratory medicine [internet]. 2002 Mar 1;
126(3):336–42. Available from: http://dx.doi.org/10.5858/2002-126-
0336-ciacbc.
17. Warner B.A., Reardon D.M. A Field Evaluation of the Coulter
STKS®. American journal of clinical pathology [internet]. 1991
Feb 1;95(2):207–17. Available from: http://dx.doi.org/10.1093/
ajcp/95.2.207.
18. Baca M.E. de, Gulati G., Kocher W., Schwarting R. Effects of storage
of blood at room temperature on hematologic parameters measured
on Sysmex XE-2100. Laboratory medicine [internet]. 2006 Jan 1;
37(1):28–36. Available from: http://dx.doi.org/10.1309/1eer-k1m0-
2qfj-rx6p.
19. Gunawardena D., Jayaweera S., Madhubhashini G., Lokumarakkala
D.D., Senanayake S.J. Reliability of parameters of complete blood
count with different storage conditions. Journal of clinical laboratory
analysis [internet]. 2016 Aug 27; 31(2):e22042. Available from:
http://dx.doi.org/10.1002/jcla.22042.
20. Buoro S., Mecca T., Seghezzi M., Manenti B., Cerutti L., Dominoni
P. et al. Assessment of blood sample stability for complete blood
count using the Sysmex XN-9000 and Mindray BC-6800 analyzers.
Revistabrasileira de hematologia e hemoterapia [internet].
2016 Jul; 38(3):225–39. Available from: http://dx.doi.org/10.1016/j.
bjhh.2016.05.010.
21. Wood B.L., Andrews J., Miller S., Sabath D.E. Refrigerated storage
improves the stability of the complete blood cell count and automated
differential. American journal of clinical pathology [internet]. 1999
Nov 1; 112(5):687–95. Available from: http://dx.doi.org/10.1093/
ajcp/112.5.687.
22. Ciepiela O., Kotuła I., Kierat S., Sieczkowska S., Podsiadłowska A.,
Jenczelewska A. et al. A comparison of Mindray BC6800, Sysmex
XN2000, and Beckman Coulter LH750 automated hematology analyzers:
a pediatric study. Journal of clinical laboratory analysis [internet].
2016 May 17; 30(6):1128–34. Available from: http://dx.doi.
org/10.1002/jcla.21992.
23. Tatsumi N., Miwa S., Lewis S.M. Specimen collection, storage, and
transmission to the laboratory for hematological tests. International
journal of hematology [internet]. 2002 Apr; 75(3):261–8. Available
from: http://dx.doi.org/10.1007/bf02982039.