Список литературы
Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России; 2019. ISBN 978-5-85502-227-8.
Ledermann J.A., Raja F.A., Fotopoulou C., Gonzalez-Martin A., Colombo N., Sessa C., on behalf of the ESMO Guidelines Working Group. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol 2013; 24 (6): 24-32.
Hoppenot C., Eckert M.A., Tienda S.M., Lengyel E. Who are the long-term survivors of high grade serous ovarian cancer? Gynecol. Oncol. 2018 Jan;148(1):204-12. https://doi.org/10.1016/j.ygyno.2017.10.032
Ahmed N., Abubaker K., Findlay J.K. Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets. Mol. Aspects Med. 2014 Oct;39:110-25. https://doi.org/10.1016/j.mam.2013.06.002
Mazzoldi E.L., Pastò A., Pilotto G., Minuzzo S., Piga I., Palumbo P. et al. Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer. J. Clin. Med. 2020;9(2): 368. https://doi.org/10.3390/jcm9020368
Mitra T., Prasad P., Mukherjee P., Chaudhuri S.R., Chatterji U., Roy S.S. Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J. Cell Biochem. 2018; 119(7):5775-87. https://doi.org/10.1002/jcb.26753
Jiang Y.X., Siu M.K., Wang J.J., Mo X.T., Leung T.H., Chan D.W. et al. Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastasis and metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling in ovarian cancer. Br. J. Cancer. 2020;123(2):275-87. https://doi.org/10.1038/s41416-020-0865-z
Sato M., Kawana K., Adachi K., Fujimoto A., Yoshida M., Nakamura H. et al. Detachment from the primary site and suspension in ascites as the initial step in metabolic reprogramming and metastasis to the omentum in ovarian cancer. Oncol. Lett. 2018;15(1):1357-61. https://doi.org/10.3892/ol.2017.7388
Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One. 2012;7(10):e46858. https://doi.org/10.1371/journal.pone.0046858
Bapat S.A., Mali A.M., Koppikar C.B., Kurrey N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025-9. https://doi.org/10.1158/0008-5472.CAN-04-3931
Pagotto A., Pilotto G., Mazzoldi E.L., Nicoletto M.O., Frezzini S., Pastò A., Amadori A. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis. 2017; 8(7):e2943. https://doi.org/10.1038/cddis.2017.327
Worzfeld T., Pogge von Strandmann E., Huber M., Adhikary T., Wagner U., Reinartz S., Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol. 2017; 7:24. https://doi.org/10.3389/fonc.2017.00024
Matte I., Lane D., Laplante C., Rancourt C., Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am. J. Cancer Res. 2012;2(5):566-80.
Lane D., Matte I., Garde-Granger P., Laplante C., Carignan A., Rancourt C., Piché A. Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer. 2015; 15:492. https://doi.org/10.1186/s12885-015-1511-7
de Lima C.A., Silva Rodrigues I.S., Martins-Filho A., Côbo Micheli D., Martins Tavares-Murta B., Candido Murta E.F., Simões Nomelini R. Cytokines in peritoneal fluid of ovarian neoplasms. J. Obstet. Gynaecol. 2020; 40(3):401-5. https://doi.org/10.1080/01443615.2019.1633516
Roy L., Bobbs A., Sattler R., Kurkewich J.L., Dausinas P.B., Nallathamby P., Cowden Dahl K.D. CD133 Promotes Adhesion to the Ovarian Cancer Metastatic Niche. Cancer Growth Metastasis. 2018; 11:1179064418767882. https://doi.org/10.1177/1179064418767882
Nakamura K., Sawada K., Kinose Y., Yoshimura A., Toda A., Nakatsuka E. et al. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells. Mol. Cancer Res. 2017; 15(1):78-92. https://doi.org/10.1158/1541-7786.MCR-16-0191
Long H., Xie R., Xiang T., Zhao Z., Lin S., Liang Z., Chen Z., Zhu B. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells. 2012; 30(10):2309-19. https://doi.org/10.1002/stem.1194
House C.D., Jordan E., Hernandez L., Ozaki M., James J.M., Kim M. et al. NFκB Promotes Ovarian Tumorigenesis via Classical Pathways That Support Proliferative Cancer Cells and Alternative Pathways That Support ALDH+ Cancer Stem-like Cells. Cancer Res. 2017; 77(24):6927-40. https://doi.org/10.1158/0008-5472.CAN-17-0366
You Y., Li Y., Li M., Lei M., Wu M., Qu Y. et al. Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin. Exp. Immunol. 2018; 191(1): 60-73. https://doi.org/10.1111/cei.13044
Yin M., Li X., Tan S., Zhou H.J., Ji W., Bellone S. et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J. Clin. Invest. 2016; 126(11):4157-73. https://doi.org/10.1172/JCI87252
Nagaraj A.B., Joseph P., Kovalenko O., Singh S., Armstrong A., Redline R. et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget. 2015; 6(27): 23720-34. https://doi.org/10.18632/oncotarget.4690
Кайгородова Е.В., Федулова Н.В., Очиров М.О., Дьяков Д.А., Молчанов С.В., Часовских Н.Ю. Различные популяции опухолевых клеток в асцитической жидкости пациенток с раком яичников. Бюллетень сибирской медицины. 2020;19(1): 50-8. https://doi.org/10.20538/1682-0363-2020-1-50-58
Zhang J., Guo X., Chang D.Y., Rosen D.G., Mercado-Uribe I., Liu J. CD133 expression associated with poor prognosis in ovarian cancer. Mod. Pathol. 2012; 25(3):456-64. https://doi.org/10.1038/modpathol.2011.170; 19; 20.
Kryczek I., Liu S., Roh M., Vatan L., Szeliga W., Wei S.et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int. J. Cancer. 2012;130:29–9.
Ferrandina G., Bonanno G., Pierelli L., Perillo A., Procoli A., Mariotti A. et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int. J. Gynecol. Cancer. 2008;18(3):506-14. https://doi.org/10.1111/j.1525-1438.2007.01056.x
Reymond N., d’Água B.B., Ridley A.J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer. 2013;13(12): 858-70. https://doi.org/10.1038/nrc3628
Bourguignon L.Y., Peyrollier K., Xia W., Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 2008;283:17635–51.
Shi Y.Y., Jiang H. Prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis. Genet. Mol. Res. 2016; 15(3). https://doi.org/10.4238/gmr.15038325
Alvero A.B., Chen R., Fu H.H., Montagna M., Schwartz P.E., Rutherford T. et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8(1):158-66. https://doi.org/10.4161/cc.8.1.7533
Vera N., Acuña-Gallardo S., Grünenwald F., Caceres-Verschae A., Realini O., Acuña R. et al. Small Extracellular Vesicles Released from Ovarian Cancer Spheroids in Response to Cisplatin Promote the Pro-Tumorigenic Activity of Mesenchymal Stem Cells. Int. J. Mol. Sci. 2019;20(20):4972. https://doi.org/10.3390/ijms20204972
Sacks Suarez J., Gurler Main H., Muralidhar G.G., Elfituri O., Xu H.L., Kajdacsy-Balla A.A., Barbolina M.V. CD44 Regulates Formation of Spheroids and Controls Organ-Specific Metastatic Colonization in Epithelial Ovarian Carcinoma. Mol. Cancer Res. 2019;17(9):1801-14. https://doi.org/10.1158/1541-7786
Nam E.J., Lee M., Yim G.W., Kim J.H., Kim S., Kim S.W., Kim Y.T. MicroRNA profiling of a CD133(+) spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line. BMC Med. Genomics. 2012;5:18. https://doi.org/10.1186/1755-8794-5-18
Monk B.J., Minion L.E., Coleman R.L. Anti-angiogenic agents in ovarian cancer: past, present, and future. Ann. Oncol. 2016; 27(1):i33-i39. https://doi.org/10.1093/annonc/mdw093
Salinas-Vera Y.M., Gallardo-Rincón D., García-Vázquez R., Hernández-de la Cruz O.N., Marchat L.A., González-Barrios J.A. et al. HypoxamiRs Profiling Identify miR-765 as a Regulator of the Early Stages of Vasculogenic Mimicry in SKOV3 Ovarian Cancer Cells. Front Oncol. 2019;9:381. https://doi.org/10.3389/fonc.2019.00381
Krishnapriya S., Sidhanth C., Manasa P., Sneha S., Bindhya S., Nagare R.P. et al. Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary. Angiogenesis. 2019;22(3):441-55. https://doi.org/10.1007/s10456-019-09669-x
Alvero A.B., Fu H.H., Holmberg J., Visintin I., Mor L., Marquina C.C. et al. Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells. 2009; 27(10):2405–13. https://doi.org/10.1002/stem.191
Caporarello N., Lupo G., Olivieri M., Cristaldi M., Cambria M.T., Salmeri M., Anfuso C.D. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol. Med. Rep. 2017; 16(4):4393-4402. https://doi.org/10.3892/mmr.2017.7179
Lane D., Matte I., Garde-Granger P., Bessette P., Piché A. Ascites IL-10 Promotes Ovarian Cancer Cell Migration. Cancer Microenviron. 2018; 11(2-3):115-24. https://doi.org/10.1007/s12307-018-0215-3
Lamichhane P., Karyampudi L., Shreeder B., Krempski J., Bahr D., Daum J. et al. IL10 Release upon PD-1 Blockade Sustains Immunosuppression in Ovarian Cancer. Cancer Res. 2017;77(23):6667-78. https://doi.org/10.1158/0008-5472.CAN-17-0740
Raghavan S., Mehta P., Xie Y., Lei Y.L., Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J. Immunother. Cancer. 2019 19;7(1):190. https://doi.org/10.1186/s40425-019-0666-1
Luborsky J., Barua A., Edassery S., Bahr J.M., Edassery S.L. Inflammasome expression is higher in ovarian tumors than in normal ovary. PLoS One. 2020; 15(1):e0227081. https://doi.org/10.1371/journal.pone.0227081
Nie D., Gong H., Mao X., Li Z. Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: A retrospective study. Gynecol. Oncol. 2019 Feb;152(2):259-64. https://doi.org/10.1016/j.ygyno.2018.11.034
Browne A., Sriraksa R., Guney T., Rama N., Van Noorden S., Curry E. et al. Differential expression of IL-8 and IL-8 receptors in benign, borderline and malignant ovarian epithelial tumours. Cytokine. 2013; 64(1):413-21. https://doi.org/10.1016/j.cyto.2013.05.006
Carbotti G., Barisione G., Orengo A.M., Brizzolara A., Airoldi I., Bagnoli M. et al. The IL-18 antagonist IL-18-binding protein is produced in the human ovarian cancer microenvironment. Clin. Cancer Res. 2013; 19(17): 4611-20. https://doi.org/10.1158/1078-0432.CCR-13-0568