СУПЕРСЕМЕЙСТВА ЭФФЛЮКСНЫХ НАСОСОВ PSEUDOMONAS AERUGINOSA (ОБЗОР ЛИТЕРАТУРЫ)
Doi: https://doi.org/10.51620/0869-2084-2022-67-1-53-58 ISSN: 0869-2084 (Print) ISSN: 2412-1320 (Online)
Аннотация
Существенный рост числа антибиотикорезистентных микроорганизмов, отмечаемый в последние годы, является проблемой здравоохранения во всем мире. Одним из молекулярных механизмов формирования устойчивости к антимикробным препаратам (АМП) у бактерий является наличие у них эффлюксных насосов. Приведен анализ экспериментальных работ, связанных с исследованием эффлюксных насосов у клинических штаммов Pseudomonas aeruginosa, одного из представителей госпитальных патогенов группы ESKAPE. Обзор предназначен для специалистов, разрабатывающих новые виды лекарственных средств против антибиотикорезистентных штаммов, научным сотрудникам, изучающим механизмы устойчивости бактерий к АМП, тяжелым металлам, биоцидам и иным противомикробным факторам.
Об авторах
ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» 142279, г. Оболенск, Россия стажер-исследователь отдела подготовки и усовершенствования специалистов neokarda@mail.ru
Список литературы
European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019. Stockholm, November 2019. ISBN 978-92-9498-387-9.
Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report [Электронный ресурс] World Health Organization: https://www.who.int/publications/i/item/9789240027336 дата обращения: 10.08.2021).
Preventing the COVID-19 pandemic from causing an antibiotic resistance catastrophe [Electronic resource]. World Health Organization: https://www.euro.who.int/ru/health-topics/disease-prevention/antimicrobial-resistance/news/news/2020/11/preventing-the-covid-19-pandemic-from-causing-an-antibiotic-resistance-catastrophe (access date: 10.08.2021).
Alonso B., Fernández-Barat L., Di Domenico E.G., Marín M., Cercenado E., Merino I. et al. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect. 2020; 20(1): 909. https://doi.org/10.1186/s12879-020-05534-1
What is Pseudomonas aeruginosa? [Electronic resource]. EHA Consulting Group: Public Health Consulting, Epidemiology, & Food Safety Consultants. https://www.ehagroup.com/resources/pathogens/pseudomonas-aeruginosa (access date 26.04.2021).
Manuel R., Gonzalez, Betty F., Leonardo L., Paris J., Lee A.A., Wassim R., Yok-Ai Q., Karl P. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. ASM Journals/ mSphere. 27 April 2016; 1 (2). https://doi.org/10.1128/mSphere.00111-15
Antibiotic resistance threats in the United States. [Электронный ресурс] U.S. Department of Agriculture. (access date 26.04.2021).
Stover C.K., Pham X.Q., Olson M.V.Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406:959. https://doi.org/10.1038/35023079
Mulcahy L.R., Isabella V.M., Lewis K. Pseudomonas aeruginosa Biofilms in Disease. Microb. Ecol. 2014; 68: 1-12. https://doi.org/10.1007/s00248-013-0297-x
Saier M.H. Jr. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters. Microbiol. Mol. Biol. Rev. 2000; 64(2): 354-411. https://doi.org/10.1128/MMBR.64.2.354-411.2000
Vamsee S.R., Maksim A.S., Rostislav C., Eric I.S., Milton H., Saier M.H. Jr. The major facilitator superfamily (MFS) revisited. FEBS Journal. 28 March 2012; 35: 2022. https://doi.org/10.1111/j.1742-4658.2012.08588.x
Sanath K., Manjusha L., Ammini P., Manisha O., Nicholas W., Varela M.F. Functional and Structural Roles of the Major Facilitator Superfamily Bacterial Multidrug Efflux Pumps. Microorganisms. 2020; 8(2): 266. https://doi.org/10.3390/microorganisms8020266
Punyawee D., Naphat S., Matthew B.A., Nisanart C., Paiboon V., Skorn M. Over-Expression of Hypochlorite Inducible Major Facilitator Superfamily (MFS) Pumps Reduces Antimicrobial Drug Susceptibility by Increasing the Production of MexXY Mediated by ArmZ in Pseudomonas aeruginosa. Front Microbiol. 2021; 11: 3376. https://doi.org/10.3389/fmicb.2020.592153
Céline C., Dominique J., Elisabeth B., Gian M.R., Benoit C., Sylvie N. Genetic analyses of Pseudomonas aeruginosa isolated from healthy captive snakes: evidence of high interand intrasite dissemination and occurrence of antibiotic resistance genes. Environ Microbiol. 2010; 12(3): 716-29. https://doi.org/10.1111/j.1462-2920.2009.02115.x
Hiroshi O., Miki H., Takuya M., Masato O., Yoshinori M. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006; 27(11): 587-93. https://doi.org/10.1016/j.tips.2006.09.001
Gui-Xin H., Teruo K., Takehiko M., Yuji M., Tohru M., Tomofusa T. An H+-Coupled Multidrug Efflux Pump, PmpM, a Member of the MATE Family of Transporters, from Pseudomonas aeruginosa. J. Bacteriol. 2004; 186(1): 262-5. https://doi.org/10.1128/JB.186.1.262-265.2004
Amy L.D., Elie D., Cedric O., Jue C. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol. Mol. Biol. Rev. 2008 Jun; 72(2): 317-64. https://doi.org/10.1128/MMBR.00031-07
Li Z., Thien-Fah M. Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics. ACS Omega. 2008; 190(13): 4447-52. https://doi.org/10.1128/JB.01655-07
Lin C., Kangmin D. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2016; 60(5): 3016-24. https://doi.org/10.1128/AAC.02986-15
Andrew P.T., Jared L.C., McPherson J.C., David P.N. Potentiation of Antibacterial Activity of the MB-1 Siderophore-Monobactam Conjugate Using an Efflux Pump Inhibitor. Antimicrobial Agents and Chemotherapy. 2015; 59(4): 2439-42. https://doi.org/10.1128/AAC.04172-14
Mélissa H., Armelle B., Françoise H., Pascale R., Anne B., Isabelle J.S. The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol. 2012; 14(7): 1696-1708. https://doi.org/10.1111/j.1462-2920.2011.02674.x
Denice C.B., Kenton L.R., Raymond J.T. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica et Biophysica Acta (BBA) — Biomembranes. September 2008; 1778(9): 1814-38. https://doi.org/10.1016/j.bbamem.2007.08.015
Li X.Z., Keith P., Hiroshi N. Contributions of MexAB-OprM and an EmrE Homolog to Intrinsic Resistance of Pseudomonas aeruginosa to Aminoglycosides and Dyes. Antimicrob. Agents Chemother. 2003; 47(1): 27-33. https://doi.org/10.1128/AAC.47.1.27-33.2003
Jae H.J., Kyeong S.S., Lee W.J., Eun J.P., Son S.Y. Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa. J. Microbiology. 04 February 2010; 47: 753-9. https://doi.org/10.1007/s12275-008-0272-2
Nakashima R., Sakurai K., Yamasaki S., Nishino K., Yamaguchi A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature. 2011; 480: 565-569. https://doi.org/10.1038/nature10641
Anes J., McCusker M.P., Séamus F., Marta M. The ins and outs of RND efflux pumps in Escherichia coli. Front. Microbiol. 2015; 6: 587. https://doi.org/10.3389/fmicb.2015.00587
Li X.Z., Nikaido H., Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1995; 39: 1948-53. https://doi.org/10.1128/aac.39.9.1948
Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. Substrate specific cities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000; 44: 3322-37. https://doi.org/10.1128/aac.44.12.3322-3327.2000
Poole K., Tetro K., Zhao Q., Neshat S., Heinrichs D.E., Bianco N. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob. Agents Chemother. 1996; 40: 2021-8. https://doi.org/10.1128/AAC.40.9.2021
Cao L., Srikumar R., Poole K. MexAB-OprM hyperexpression in NalC-type multidrug- resistant Pseudomonas aeruginosa: identifi cation and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol. Microbiol. 2004; 53: 1423-36. https://doi.org/10.1111/j.1365-2958.2004.04210.x
Caughlan E.R., Jones A.K., Delucia A.M., Woods A.L., Lili X., Bing M., Barnes S.W., Walker J.R., Sprague E.R., Xia Y., Dean C.R. Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the Gram-negative pathogen Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012; 56: 17-27. https://doi.org/10.1128/AAC.05417-11
Muller J.F., Stevens A.M., Craig J., Love N.G. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol. 2007; 73: 4550-8. https://doi.org/10.1128/AEM.00169-07
Aires J.R., Köhler T., Nikaido H., Plésiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 1999; 43: 2624-8. https://doi.org/10.1128/AAC.43.11.2624
Mine T., Morita Y., Kataoka A., Mizushima T., Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1999; 43: 415-7. https://doi.org/10.1128/AAC.43.2.415
Murata T., Gotoh N., Nishino T. Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett. 2002; 217: 57-63. https://doi.org/10.1111/j.1574-6968.2002.tb11456.x
Baum E.Z., Crespo-Carbone S.M., Morrow B.J., Davies T.A., Foleno B.D., He W., Queenan A.M., Bush K. Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009; 53: 2785-90. https://doi.org/10.1128/AAC.00018-09
Morita Y., Gilmour C., Metcalf D., Poole K. Translational control of the antibiotic inducibility of the PA5471 gene required for mexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J. Bacteriol. 2009; 191: 4966-75. https://doi.org/10.1128/JB.00073-09
Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X.Z., Nishino T. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol. Microbiol. 2000; 21: 713-24.
Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2000; 44: 3322-37. https://doi.org/10.1128/aac.44.12.3322-3327.2000
Zhang L., Li X.Z., Poole K. Fluoroquinolone susceptibilities of efflux-mediated multidrug resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J. Antimicrob. Chemother. 2001; 48: 549-52. https://doi.org/10.1093/jac/48.4.549
Fraud S., Campigotto A.J., Chen Z., Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother. 2008; 52: 4478-82. https://doi.org/10.1128/AAC.01072-08
Köhler T., Michea-Hamzehpour M., Henze U., Gotoh N., Curty L.K., Pechère J.C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 1997; 23: 345-54. https://doi.org/10.1046/j.1365-2958.1997.2281594.x
Wang D., Seeve C., Pierson L.S., Pierson E.A. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics. 2013; 14:618. https://doi.org/10.1186/1471-2164-14-618
Aendekerk S., Diggle S.P., Song Z., Hoiby N., Cornelis P., Williams P., Camara M. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology. 2005; 151:1113-25. https://doi.org/10.1099/mic.0.27631-0
Palma M., Zurita J., Ferreras J.A., Worgall S., Larone D.H., Shi L., Campagne F., Luis E.N. Quadri. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect. Immun. 2005; 73: 2958-66. https://doi.org/10.1128/IAI.73.5.2958-2966.2005
Lars E.P. Dietrich, Price-Whelan A., Petersen A., Whiteley M., Newman D.K. The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006; 61: 1308-21. https://doi.org/10.1111/j.1365-2958.2006.05306.x
Chuanchuen R., Narasaki C.T., Schweizer H.P. The Mex J.K. efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol. 2002; 184: 5036-44. https://doi.org/10.1128/JB.184.18.5036-5044.2002
Chuanchuen R., Gaynor J.B., Karkhoff-Schweizer R., Schweizer H.P. Molecular characterization of MexL. Тhe transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005; 49: 1844-51. https://doi.org/10.1128/AAC.49.5.1844-1851.2005
Mima T., Sekiya H., Mizushima T., Kuroda T., Tsuchiya T. Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol. 2005; 49: 999-1002. https://doi.org/10.1111/j.1348-0421.2005.tb03696.x
Li Y., Mima T., Komori Y., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2011; 52: 572-5. https://doi.org/10.1093/jac/dkg390
Chiang W.C., Pamp S.J., Nilsson M., Givskov M., Tolker-Nielsen T. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol. Med. Microbiol. 2019; 10: 913. https://doi.org/10.1111/j.1574-695X.2012.00929.x
Yang L., Chen L., Shen L., Surette M., Duan K. Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence. J. Microbiol. 2011; 49: 107-14.
Mima T., Kohira N., Li Y., Sekiya H., Ogawa W., Kuroda T., Tsuchiya T. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. Microbiology. 2009 Nov; 155(Pt 11): 3509-17. https://doi.org/10.1099/mic.0.031260-0
Mima T., Joshi S., Gomez-Escalada M., Schweizer HP. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J. Bacteriol. 2007 Nov; 189(21): 7600-9. https://doi.org/10.1128/JB.00850-07
Perron K., Caille O., Rossier C., Van Delden C., Dumas J., Köhler T. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 2004; 279: 8761-8. https://doi.org/10.1074/jbc.M312080200
Hassan К.А., Liu Q., Elbourne L.D.H., Ahmad I., Sharples D., Naidu V., Chan C.L., Li L., Harborne S.P.D., Pokhrel A., Postis V.L.G., Goldman A., Henderson P.J.F., Paulsen I.T. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Research in Microbiology. 2018; 169 (7-8): 450-4. https://doi.org/10.1016/j.resmic.2018.01.001
Tegos G.P., Haynes M., Strouse J.J., Khan M.M.T., Bologa C.G., Oprea T.I., Sklar L.A. Microbial Efflux Pump Inhibition: Tactics and Strategies. Curr. Pharm. Des. 2011; 17(13): 1291-1302. https://doi.org/10.2174/138161211795703726
Ключевые слова
Для цитирования:
Иванов М.Э., Фурсова Н.К., Потапов В.Д. Cуперсемейства эффлюксных насосов Pseudomonas aeruginosa (обзор литературы). Клиническая лабораторная диагностика. 2022; 67(1): 53-58. https://doi.org/10.51620/0869-2084-2022-67-1-53-58
For citation:
Ivanov M.E., Fursova N.K., Potapov V.D. Pseudomonas aeruginosa efflux pump superfamily (review of literature). Klinichescheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2022; 67(1): 53-58. https://doi.org/10.51620/0869-2084-2022-67-1-53-58