Аннотация
Актуальность. Изменение продукции и структуры коллагена при раке молочной железы (РМЖ) может влиять на сти-
мулирование и прогрессирование опухоли от ее злокачественного трансформирования до усиленной инвазии, ангиогенеза и
метастазирования.
Цель работы: определение концентрации пролина (Pro), транс-4-гидроксипролина (t4HYP) и гидроксилизина (Hyl) как основ-
ных аминокислот, входящих в структуру коллагена в слюне при РМЖ, а также оценка их взаимосвязи с клинико-патологиче-
скими и молекулярно-биологическими характеристиками РМЖ.
Материал и методы. Проведено исследование на 141 добровольцах, разделенных на 2 группы: основная (рак молочной желе-
зы, n=116) и контрольная группа (условно здоровые, n=25).
Результаты. Установлено повышение концентрации Pro в слюне, не зависящее от клинико-патологических и молекулярно-
биологических характеристик РМЖ, что может рассматриваться как потенциальный диагностический маркер. Повы-
шенное содержание Pro, t4HYP и Hyl в слюне коррелирует с HER2-положительным статусом РМЖ, тогда как повышенное
содержание t4HYP и Hyl коррелирует с отсутствием экспрессии рецепторов эстрогена и прогестерона, низкой дифферен-
цировкой и высокой пролиферативной активностью опухоли, что в комплексе является прогностически неблагоприятными
признаками и характерно для агрессивных молекулярно-биологических подтипов РМЖ. Для t4HYP показаны взаимосвязи с
показателями иммунного статуса (ИЛ-2, ИЛ-10 и ИЛ-18) в слюне при РМЖ.
Обсуждение. Показано, что концентрация Pro в целом повышена в слюне при РМЖ, тогда так именно для t4HYP и Hyl выяв-
лены тонкие различия между подгруппами РМЖ, отличающимися по клинико-патологическим и молекулярно-биологическим
характеристикам. Для t4HYP показано больше взаимосвязей с показателями иммунного статуса в слюне при РМЖ.
Заключение. Это подчеркивает необходимость комплексной оценки содержания метаболитов коллагена в слюне при РМЖ.
Annotation
Background. Alterations in collagen production and structure in breast cancer may influence tumor stimulation and progression from
malignant transformation to increased invasion, angiogenesis, and metastasis.
Objective. The purpose of the work is to determine the concentration of proline (Pro), trans-4-hydroxyproline (t4HYP) and hydroxylysine
(Hyl) as the main amino acids included in the structure of collagen in saliva in breast cancer, as well as to assess their relationship
with clinicopathological and molecular biological characteristics breast cancer.
Material and methods. A study was conducted on 141 volunteers, divided into 2 groups: the main group (breast cancer, n=116) and
the control group (conditionally healthy, n=25).
Results. An increase in the concentration of Pro in saliva was established, independent of the clinicopathological and molecular biological
characteristics of breast cancer, which can be considered as a potential diagnostic marker. Increased levels of Pro, t4HYP and
Hyl in saliva correlate with the HER2-positive status of breast cancer, while increased levels of t4HYP and Hyl correlate with the lack
of expression of estrogen and progesterone receptors, low differentiation and high proliferative activity of the tumor, which in combination
are prognostically unfavorable signs and characteristic for aggressive molecular biological subtypes of breast cancer. For t4HYP,
relationships with indicators of immune status (IL-2, IL-10 and IL-18) in saliva in breast cancer were shown.
Discussion. It has been shown that the concentration of Pro is generally increased in saliva in breast cancer, while subtle differences
in clinicopathological and molecular biological characteristics have been identified for t4HYP and Hyl. For t4HYP, more relationships
were shown with indicators of salivary immune status in breast cancer.
Conclusion. This emphasizes the need for a comprehensive assessment of the content of collagen metabolites in saliva in breast cancer.
Key wоrds: saliva; breast cancer; proline; trans-4-hydroxyproline; hydroxylysine; collagen
Список литературы
1. Li H.X., Zheng J.H., Fan H.X., Li H.P., Gao Z.X., Chen D. Expression
of αvβ6 Integrin and Collagen Fibre in Oral Squamous Cell Carcinoma:
Association With Clinical Outcomes and Prognostic Implications. J.
Oral. Pathol. Med. 2013; 42: 547–56. DOI: 10.1111/jop.12044.
2. Conklin M.W., Eickhoff J.C., Riching K.M., Pehlke C.A., Eliceiri
K.W., Provenzano P.P., et al. Aligned Collagen Is a Prognostic Signature
for Survival in Human Breast Carcinoma. Am. J. Pathol. 2011;
178: 1221–32. DOI: 10.1016/j.ajpath.2010.11.076.
3. Esbona K., Yi Y., Saha S., Yu M., Van Doorn R.R., Conklin M.W.,
et al. The Presence of Cyclooxygenase 2, Tumor-Associated Macrophages,
and Collagen Alignment as Prognostic Markers for Invasive
Breast Carcinoma Patients. Am. J. Pathol. 2018; 188 (3): 559-73.
DOI: 10.1016/j.ajpath.2017.10.025.
4. Phang J.M. The regulatory mechanisms of proline and hydroxyproline
metabolism: Recent advances in perspective. Front. Oncol. 2023;
26 (12): 1118675. DOI: 10.3389/fonc.2022.1118675.
5. Shi R., Gao S., Zhang J., Xu J., Graham L.M., Yang X., et al. Collagen
prolyl 4-hydroxylases modify tumor progression. Acta Biochim.
Biophys. Sin. (Shanghai). 2021; 53 (7): 805-814. DOI: 10.1093/abbs/
gmab065.
6. Gorres K.L., Raines R.T. Prolyl 4-hydroxylase. Crit. Rev. Biochem.
Mol. Biol. 2010; 45 (2): 106-24. DOI: 10.3109/10409231003627991.
7. Vasta J.D., Raines R.T. Human Collagen Prolyl 4-Hydroxylase Is Activated
by Ligands for Its Iron Center. Biochemistry. 2016; 55 (23):
3224-33. DOI: 10.1021/acs.biochem.6b00251.
8. Yamauchi M., Sricholpech M. Lysine post-translational modifications
of collagen. Essays Biochem. 2012; 52: 113-33. DOI: 10.1042/
bse0520113.
9. Lucero H.A., Kagan H.M. Lysyl oxidase: an oxidative enzyme and
effector of cell function. Cell Mol. Life Sci. 2006; 63: 2304–16. DOI:
10.1007/s00018-006-6149-9.
10. Payne S.L., Hendrix M.J., Kirschmann D.A. Paradoxical roles for lysyl
oxidases in cancer: a prospect. J. Cell Biochem. 2007; 101: 1338–
1354. DOI: 10.1002/jcb.21371.
11. Barry-Hamilton V., Spangler R., Marshall D., McCauley S., Rodriguez
H.M., Oyasu M., et al. Allosteric inhibition of lysyl oxidaselike-
2 impedes the development of a pathologic microenvironment.
Nat. Med. 2010; 16 (9): 1009-17. DOI: 10.1038/nm.2208.
12. Siddikuzzaman, Grace V.M., Guruvayoorappan C. Lysyl oxidase: a
potential target for cancer therapy. Inflammopharmacology. 2011; 19:
117–29. DOI: 10.1007/s10787-010-0073-1.
13. Burke L., Guterman I., Palacios G. R., Britton R.G., Burschowsky D.,
Tufarelli C., et al. The Janus-like role of proline metabolism in cancer.
Cell Death Discov. 2020; 6: 104. DOI: 10.1038/s41420-020-00341-8.
14. Liu W., Hancock C.N., Fischer J.W., Harman M., Phang J. M. Proline
biosynthesis augments tumor cell growth and aerobic glycolysis: involvement
of pyridine nucleotides. Sci. Rep. 2015; 5: 17206. DOI:
10.1038/srep17206.
15. Pandhare J., Donald S. P., Cooper S. K., Phang J. M. Regulation and
function of proline oxidase under nutrient stress. J. Cell Biochem.
2009; 107 (4): 759–68. DOI: 10.1002/jcb.22174.
16. Tanner J.J., Fendt S.M., Becker D.F. The proline cycle as a potential
cancer therapy target. Biochemistry. 2018; 57 (25): 3433–44. DOI:
10.1021/acs.biochem.8b00215.
17. Phang J.M., Liu W., Zabirnyk O. Proline metabolism and microenvironmental
stress. Annu Rev. Nutr. 2010; 30: 441–63. DOI: 10.1146/
annurev.nutr.012809.104638.
18. Gordon-Weeks A., Yuzhalin A.E. Cancer Extracellular Matrix Proteins
Regulate Tumour Immunity. Cancers (Basel). 2020; 12 (11):
3331. DOI: 10.3390/cancers12113331.
19. Silver A.B., Tzeng S.Y., Lager M., Wang J., Ishihara J., Green J.J.,
et al. An engineered immunocytokine with collagen affinity improves
the tumor bioavailability, tolerability, and therapeutic efficacy
of IL-2. Cell Rep. Med. 2023; 4 (11): 101289. DOI: 10.1016/j.
xcrm.2023.101289.
20. Huang Y., Zou K., Jiang H., Li Z. The complex role of IL-10 in malignant
ascites: a review. Cancer Immunol. Immunother. 2024; 73 (2):
32. DOI: 10.1007/s00262-023-03616-y.
21. Xu R. P4HA1 is a new regulator of the HIF-1 pathway in breast cancer.
Cell Stress. 2019; 3 (1): 27-28. DOI: 10.15698/cst2019.01.173.
22. Pickup M.W., Mouw J.K., Weaver V.M. The Extracellular Matrix
Modulates the Hallmarks of Cancer. EMBO Rep. 2014; 15: 1243–53.
DOI: 10.15252/embr.201439246.
23. Rømer A.M.A., Thorseth M.L., Madsen D.H. Immune Modulatory
Properties of Collagen in Cancer. Front. Immunol. 2021; 12: 791453.
DOI: 10.3389/fimmu.2021.791453.
24. Bel’skaya L.V., Sarf E.A., Solomatin D.V., Kosenok V.K. Metabolic
Features of Saliva in Breast Cancer Patients. Metabolites. 2022; 12
(2): 166. DOI: 10.3390/metabo12020166.
25. Bel’skaya L.V., Sarf E.A. «Salivaomics» of Different Molecular Biological
Subtypes of Breast Cancer. Current Issues in Molecular Biology.
2022; 44 (7): 3053-74. DOI: 10.3390/cimb44070211.
26. Bel’skaya L.V., Sarf E.A. Prognostic Value of Salivary Biochemical
Indicators in Primary Resectable Breast Cancer. Metabolites. 2022;
12 (6): 552. DOI: 10.3390/metabo12060552.
27. Koopaie M., Kolahdooz S., Fatahzadeh M., Manifar S. Salivary biomarkers
in breast cancer diagnosis: A systematic review and diagnostic
meta-analysis. Cancer Med. 2022; 11 (13): 2644-61. DOI:
10.1002/cam4.4640.
28. Nonaka T., Wong D.T.W. Saliva diagnostics: Salivaomics, saliva exosomics,
and saliva liquid biopsy. J. Am. Dent. Assoc. 2023; 154 (8):
696-704. DOI: 10.1016/j.adaj.2023.05.006. 29. Porto-Mascarenhas E.C., Assad D.X., Chardin H., Gozal D., De Luca
Canto G., Acevedo A.C., et al. Salivary biomarkers in the diagnosis of
breast cancer: A review. Crit. Rev. Oncol. Hematol. 2017; 110: 62-73.
DOI: 10.1016/j.critrevonc.2016.12.009. 30. Hancock C.N., Liu W., Alvord W.G., Phang J.M. Co-regulation of
mitochondrial respiration by proline dehydrogenase/oxidase and succinate.
Amino Acids. 2016; 48 (3): 859-72. DOI: 10.1007/s00726-
015-2134-7.
31. Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates
cell growth, autophagy and metabolism. Nat. Cell Biol. 2011; 13
(9): 1016-23. DOI: 10.1038/ncb2329.
32. Phang J.M. Proline metabolism in cell regulation and cancer biology:
Recent advances and hypotheses. Antioxid. Redox Signaling. 2019; 30
(4): 635-49. DOI: 10.1089/ars.2017.7350.
33. Gilkes D.M., Chaturvedi P., Bajpai S., Wong C.C., Wei H., Pitcairn
S., et al. Collagen prolyl hydroxylases are essential for breast cancer
metastasis. Cancer Res. 2013; 73: 3285–96. DOI: 10.1158/0008-
5472.CAN-12-3963.
34. Xiong G., Deng L., Zhu J., Rychahou P.G., Xu R. Prolyl-4-hydroxylase
α subunit 2 promotes breast cancer progression and metastasis
by regulating collagen deposition. BMC Cancer. 2014; 14: 1. DOI:
10.1186/1471-2407-14-1.
35. Mouw J.K., Ou G., Weaver V.M. Extracellular Matrix Assembly: A
Multiscale Deconstruction. Nat. Rev. Mol. Cell Biol. 2014; 15: 771–
85. DOI: 10.1038/nrm3902.
36. Molnar J., Fong K.S., He Q.P., Hayashi K., Kim Y., Fong S.F., et al.
Structural and functional diversity of lysyl oxidase and the LOX-like
proteins. Biochim. Biophys. Acta. 2003; 1647 (1-2): 220-4. DOI:
10.1016/s1570-9639(03)00053-0.
37. Eyre D.R., Glimcher M.J. Collagen Cross-Linking. Isolation of Cross-
Linked Peptides From Collagen of Chicken Bone. Biochem J. 1973;
135: 393–403. DOI: 10.1042/bj1350393.
38. Baker A.M., Bird D., Lang G., Cox T.R., Erler J.T. Lysyl Oxidase Enzymatic
Function Increases Stiffness to Drive Colorectal Cancer Progression
Through FAK. Oncogene. 2013; 32: 1863–8. DOI: 10.1038/
onc.2012.202.
39. Rodriguez-Pascual F., Rosell-Garcia T. The challenge of determining
lysyl oxidase activity: Old methods and novel approaches. Anal. Biochem.
2022; 639: 114508. DOI: 10.1016/j.ab.2021.114508.
40. Miller B.W., Morton J.P., Pinese M., Saturno G., Jamieson N.B., Mc-
Ghee E., et al. Targeting the LOX/hypoxia axis reverses many of the
features that make pancreatic cancer deadly: inhibition of LOX abrogates
metastasis and enhances drug efficacy. EMBO Mol. Med. 2015;
7 (8): 1063-76. DOI: 10.15252/emmm.201404827.
41. Acerbi L., Cassereau I., Dean Q., Shi A., Au C., Park Y.Y., et al. Human
breast cancer invasion and aggression correlates with ECM stiffening
and immune cell infiltration. Integr. Biol. (Camb.). 2015; 7 (10):
1120-34. DOI: 10.1039/c5ib00040h.
42. Du W., Xia X., Hu F., Yu J. Extracellular matrix remodeling in the
tumor immunity. Front. Immunol. 2024; 14: 1340634. DOI: 10.3389/
fimmu.2023.1340634.
43. Yu T., Di G. Role of tumor microenvironment in triple-negative breast
cancer and its prognostic significance. Chin. J. Cancer Res. 2017; 29
(3): 237-52. DOI: 10.21147/j.issn.1000-9604.2017.03.10.
44. Somasundaram R., Ruehl M., Tiling N., Ackermann R., Schmid M.,
Riecken E.O. et al. Collagens serve as an extracellular store of bioactive
interleukin 2. J. Biol. Chem. 2000; 275 (49): 38170-38175. DOI:
10.1074/jbc.M006616200.
45. Dustin M.L. Role of adhesion molecules in activation signaling
in T lymphocytes. J. Clin. Immunol. 2001; 21 (4): 258-63. DOI:
10.1023/a:1010927208180.
46. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin
10. J. Exp. Med. 1991; 174 (6): 1549-55. DOI: 10.1084/
jem.174.6.1549.
47. Sabat R., Grütz G., Warszawska K., Kirsch S., Witte E., Wolk K., et al.
Biology of interleukin-10. Cytokine & Growth Factor Reviews. 2010;
21: 331–44. DOI: 10.1016/j.cytogfr.2010.09.002.
48. Short W.D., Steen E., Kaul A., Wang X., Olutoye O.O. 2nd., Vangapandu
H.V., et al. IL-10 promotes endothelial progenitor cell infiltration
and wound healing via STAT3. FASEB J. 2022; 36 (7): e22298.
DOI: 10.1096/fj.201901024RR.
49. Yamamoto T., Eckes B., Krieg T. Effect of interleukin-10 on the gene
expression of type I collagen, fibronectin, and decorin in human skin
fibroblasts: differential regulation by transforming growth factor-beta
and monocyte chemoattractant protein-1. Biochem. Biophys. Res.
Commun. 2001; 281 (1): 200-5. DOI: 10.1006/bbrc.2001.4321.
50. Shi J., Li J., Guan H., Cai W., Bai X., Fang X., et al. Anti-fibrotic actions
of interleukin-10 against hypertrophic scarring by activation of
PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts.
PLoS One. 2014; 9(5): e98228. DOI: 10.1371/journal.pone.0098228.
51. Czuwara-Ladykowska J., Sementchenko V.I., Watson D.K.; Trojanowska
M. Ets1 is an effector of the transforming growth factor beta
(TGF-beta ) signaling pathway and an antagonist of the profibrotic
effects of TGF-beta. J. Biol. Chem. 2002; 277 (23): 20399-20408.
DOI: 10.1074/jbc.M200206200.
52. Sherriff-Tadano R., Ohta A., Morito F., Mitamura M., Haruta Y.,
Koarada S., et al. Antifibrotic effects of hepatocyte growth factor on
scleroderma fibroblasts and analysis of its mechanism. Mod. Rheumatol.
2006; 16 (6): 364-71. DOI: 10.1007/s10165-006-0525-z.
53. Westermarck J., Kähäri V.M. Regulation of matrix metalloproteinase
expression in tumor invasion. FASEB J. 1999; 13 (8): 781-92.
54. Reunanen N., Foschi M., Han J., Kahari V.M. Activation of extracellular
signal-regulated kinase 1/2 inhibits type I collagen expression
by human skin fibroblasts. J. Biol. Chem. 2000; 275 (44): 34634-9.
DOI: 10.1074/jbc.C000175200.
55. Kim H.J., Song S.B., Choi J.M., Kim K.M., Cho B.K., Cho D.H.,
Park H.J. IL-18 downregulates collagen production in human dermal
fibroblasts via the ERK pathway. J. Invest Dermatol. 2010; 130 (3):
706-15. DOI: 10.1038/jid.2009.302.