Аннотация
В последнее десятилетие одним из самых стремительно развивающихся направлений в клинической лабораторной диагно-
стике является так называемая «жидкая биопсия», основанная на анализе экзосом. Она активно используется при диагно-
стике широкого круга различной патологии человека. Техническая возможность ее применения стала доступной даже для
небольших лабораторий, не имеющих дорогостоящего узкоспециализированного оборудования. К сожалению, в Российской
Федерации данное направление лабораторной диагностики применяется не так широко, как хотелось бы. Одной из основ-
ных причин, сдерживающих дальнейшее развитие этого диагностического направления в лабораторной практике в РФ,
является излишняя лаконичность и фрагментарность изложения информации в специальных источниках литературы о су-
ществующих технологиях выделения экзосом из биологического материала с диагностической целью. Все это в итоге приво-
дит к дефициту информации по данному вопросу у медицинских специалистов клинической лабораторной диагностики и, как
следствие, к необоснованному ограничению диагностических возможностей небольших лабораторий. Приведены сведения
о современных методах выделения экзосом из биологического материала с диагностической целью. Оценены их преимуще-
ства и недостатки при использовании в работе клинических лабораторий. Обоснована возможность выделения экзосом из
биологического материала с диагностической целью даже в небольших клинических лабораториях, не оснащенных дорогим
узкоспециализированным оборудованием.
Annotation
In the last decade, one of the most rapidly developing areas in clinical laboratory diagnostics is the so-called ‘liquid biopsy’ based
on the analysis of exosomes. It is actively used in the diagnosis of a wide range of different human pathologies. The technical
possibility of its application has become available even for small laboratories that do not have expensive highly specialised equipment.
Unfortunately, in the Russian Federation this direction of laboratory diagnostics is not applied as widely as it would be desirable.
One of the main reasons restraining further development of this diagnostic direction in laboratory practice in the Russian Federation
is excessive brevity and fragmentary presentation of information in special literature sources about existing technologies of exosome
isolation from biological material for diagnostic purposes. All this eventually leads to the lack of information on this issue among
medical specialists of clinical laboratory diagnostics and, as a consequence, to the unjustified limitation of diagnostic capabilities
of small laboratories. The article presents information about modern methods of exosomes isolation from biological material for
diagnostic purposes. Their advantages and disadvantages when used in clinical laboratories are estimated. The possibility of isolation
of exosomes from biological material for diagnostic purposes even in small clinical laboratories not equipped with expensive highly
specialised equipment is substantiated.
Key words: exosomes; extracellular vesicles; laboratory diagnosis; isolation techniques
Список литературы
Л И Т Е РАТ У РА ( П П . 1 – 3 7 С М . R E F E RENC
E S )
38. Самойлова Е.М., Кальсин В.А., Беспалова В.А., Девиченский
В.М., Баклаушев В.П. Экзосомы: от биологии к клинике. Гены и
клетки. 2017; 12 (4): 7-19. DOI: 10.23868/20170702.
39. Григорьева А.Е., Тамкович С.Н., Еремина А.В., Тупикин А.Е.,
Кабилов М.Р., Черных В.В. и др. Экзосомы слезной жидкости
здоровых людей: выделение, идентификация и характериза-
ция. Биомедицинская химия. 2016; 62(1): 99-106. DOI: 10.18097/
PBMC20166201099.
40. Тамкович С.Н., Тутанов О.С., Лактионов П.П. Экзосомы: механиз-
мы возникновения, транспорт, биологическая активность, исполь-
зование в диагностике. Биологические мембраны. 2016; 33 (3):
163-75. hrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://
www.elibrary.ru/download/elibrary_25921468_76328256.pdf.
R E F E R E NC E S
1. Lai J.J., Chau Z.L., Chen S., Hill J.J., Korpany K.V., Liang N-W. et
al. Exosome processing and characterization approaches for research
and technology development. Adv. Sci. 2022; 9 (15): 2103222. DOI:
10.1002/advs.202103222.
2. Li P., Kaslan M., Lee S.H., Yao J., Gao Z. et al. Progress in exosome
isolation techniques. Theranostics. 2017; 7 (3): 789-804. DOI:
10.7150/thno.18133.
3. Dilsiz N. A comprehensive review on recent advances in exosome isolation
and characterization: Toward clinical applications. Translational.
Oncology. 2024; 50: 102121. DOI: 10.1016/j.tranon.2024.102121.
4. Zhao Z., Wijerathne H., Godwin A.K., Soper S.A. Isolation and analysis
methods of extracellular vesicles (EVs). Extracell. Vesicles Circ.
Nucl. Acids. 2021; 2: 80-103. DOI: 10.20517/evcna.2021.07.
5. Chevillet J.R., Kang Q., Ruf I.K., Briggs H.A., Vojtech L.N., Hughes
S.M. et al. Quantitative and stoichiometric analysis of the microRNA
content of exosomes. Proc. Natl. Acad. Sci. USA. 2014; 111(41):
14888-93. DOI: 10.1073/pnas.1408301111.
6. Park S.H., Lee E.K., Yim J., Lee M.H., Lee E., Lee Y.-S. et al. Exosomes:
nomenclature, isolation, and biological roles in liver diseases.
Biomol. Ther. 2023; 31 (): 253-63. DOI: 10.4062/biomolther.
2022.161.
7. McGough I.J., Vincent J.P. Exosomes in developmental signaling.
Development. 2016; 143 (14): 2482-93. DOI: 10.1242/dev.126516.
8. Konoshenko M.Y., Lekchnov E.A., Vlassov A.V., Laktionov P.P.
Isolation of extracellular vesicles: general methodologies and latest
trends. Biomed. Res. Int. 2018; 2018(1): 8545347. DOI:
10.1155/2018/8545347.
9. Brennan K., Martin K., FitzGerald S.P., O’Sullivan J., Wu Y., Blanco
A., Richardson C. et al. A comparison of methods for the isolation and
separation of extracellular vesicles from protein and lipid particles in
human serum. Sci. Rep. 2020; 10: 1039. DOI: 10.1038/s41598-020-
57497-7.
10. Livshits M.A., Khomyakova E., Evtushenko E.G., Lazarev V.N.,
Kulemin N.A., Semina S.E. et al. Isolation of exosomes by differential
centrifugation: theoretical analysis of a commonly used protocol. Sci.
Rep. 2015; 5: 17319. DOI: 10.1038/srep17319.
11. Nigro A., Finardi A., Ferraro M.M., Manno D.E., Quattrini A., Furlan
R. et al. Selective loss of microvesicles is a major issue of the differential
centrifugation isolation protocols. Sci. Rep. 2021; 11 (1): 3589.
DOI: 10.1038/s41598-021-83241-w.
12. Iwai K., Minamisawa T., Suga K., Yajima Y., Shiba K. Isolation of
human salivary extracellular vesicles by iodixanol density gradient
ultracentrifugation and their characterizations. J. Extracell. Vesicle.
2016; 5: 30829. DOI: 10.3402/jev.v5.30829.
13. Choi D., Montermini L., Kim D.K., Meehan B., Roth F.P., Rak J. et al.
The impact of oncogenic EGFRvIII on the proteome of extracellular
vesicles released from glioblastoma cells. Mol. Cell. Proteom. 2018;
17 (10): 1948-64. DOI: 10.1074/mcp.RA118.000644.
14. Ter-Ovanesyan D., Gilboa T., Budnik B., Nikitina A., Whiteman S.,
Lazarovits R. et al. Improved isolation of extracellular vesicles by removal
of both free proteins and lipoproteins. eLife. 2023; 12: e86394.
DOI: 10.7554/eLife.86394.
15. Busatto S., Vilanilam G., Ticer T., Lin W-L., Dickson D.W., Shapiro
S. et al. Tangential flow filtration for highly efficient concentration of
extracellular vesicles from large volumes of fluid. Cells. 2018; 7 (12):
273. DOI: 10.3390/cells7120273.
16. Wang W., Sun H., Duan H., Sheng G., Tian N., Liu D. et al. Isolation
and usage of exosomes in central nervous system diseases. CNS Neurosci.
Ther. 2024; 30 (3): e14677. DOI: 10.1111/cns.14677.
17. Yakubovich E.I., Polischouk A.G., Evtushenko V.I. Principles
and problems of exosome isolation from biological fluids. Biochem.
Mosc. Suppl. Ser. A. 2022; 16 (2): 115-26. DOI: 10.1134/
S1990747822030096.
18. Liangsupree T., Multia E., Riekkola M.L. Modern isolation and separation
techniques for extracellular vesicles. J. Chromatogr. A. 2021;
1636: 461773. DOI: 10.1016/j.chroma.2020.461773.
19. Ludwig A., De Miroschedji K., Doeppner T.R., Börger V., Ruesing
J., Rebmann V. et al. Precipitation with polyethylene glycol followed
by washing and pelleting by ultracentrifugation enriches
extracellular vesicles from tissue culture supernatants in small
and large scales. J. Extracell. Vesicle. 2018; 7 (1): 1528109. DOI:
10.1080/20013078.2018.1528109.
20. Shami-shah A., Travis B.G., Walt D.R. Advances in extracellular
vesicle isolation methods: a path towards cell-type specific EV isolation.
Extracell. Vesicles Circ. Nucleic Acids. 2023; 4: 447-60. DOI:
10.20517/evcna.2023.14.
21. Foers A.D., Chatfield S., Dagley L.F., Webb A.I., Cheng L., Hill A.F.
et al. Enrichment of extracellular vesicles from human synovial fluid
using size exclusion chromatography. J. Extracell. Vesicle. 2018; 7
(1): 1490145. DOI: 10.1080/20013078.2018.1490145.
22. Hirschberg Y., Schildermans K., Van Dam A., Sterck K., Boonen
K., Nelissen I. et al. Characterizing extracellular vesicles from cerebrospinal
fluid by a novel size exclusion chromatography method.
Alzheimer’s & Dementia. 2021; 17 (S5): e051264. DOI: 10.1002/
alz.051264.
23. Yang D., Zhang W., Zhang H., Zhang F., Chen L., Ma L. et al. Progress,
opportunity, and perspective on exosome isolation-efforts for efficient
exosome-based theranostics. Theranostics. 2020; 10 (8): 3684-
3707. DOI: 10.7150/thno.41580.
24. Yan W., Jiang S. Immune cell-derived exosomes in the cancer-immunity
cycle. Trends Cancer. 2020; 6 (6): 506-17. DOI: 10.1016/j.
trecan.2020.02.013.
25. Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: an update
post COVID-19 vaccines. Bioeng. Transl. Med. 2021; 6 (3): e10246.
DOI: 10.1002/btm2.10246.
26. Weng Y., Sui Z., Shan Y., Hu Y., Chen Y., Zhang L. et al. Effective
isolation of exosomes with polyethylene glycol from cell culture supernatant
for in-depth proteome profiling. Analyst. 2016; 141 (15):
4640-6. DOI: 10.1039/C6AN00892E.
27. Deregibus M.C., Figliolini F., D’antico S., Manzini P.M., Pasquino
C., De Lena M. et al. Charge-based precipitation of extracellular
vesicles. Int. J. Mol. Med. 2016; 38 (5): 1359-66. DOI: 10.3892/
ijmm.2016.2759.
28. Lobb R.J., Becker M., Wen W.S., Wong C.S.F., Wiegmans A.P.,
Leimgruber A. et al. Optimized exosome isolation protocol for cell
culture supernatant and human plasma. J. Extracell. Vesicle. 2015; 4:
27031. DOI: 10.3402/jev.v4.27031.
29. Salafi T., Zeming K.K., Zhang Y. Advancements in microfluidics
for nanoparticle separation. Lab. Chip. 2017; 17 (1): 11-33. DOI:
10.1039/C6LC01045H.
30. Lin S., Yu Z., Chen D., , Wang Z., Miao J., Li Q. et al. Progress in
microfluidics-based exosome separation and detection technologies
for diagnostic applications. Small. 2020; 16 (9): 1903916. DOI:
10.1002/smll.201903916.
31. Narayanamurthy V., Jeroish Z.E., Bhuvaneshwari K.S., Bayat P.,
Premkumar R., Samsuri F. et al. Advances in passively driven microfluidics
and lab-on-chip devices: a comprehensive literature review
and patent analysis. RSC Adv. 2020; 10 (20): 11652-80. DOI:
10.1039/D0RA00263A.
32. Guo W., Gao Y., Li N., Shao F., Wang C., Wang P. et al. Exosomes:
new players in cancer. Oncol. Rep. 2017; 38 (2): 665-75. DOI:
10.3892/or.2017.5714.
33. Oliveira-Rodríguez M., López-Cobo S., Reyburn H.T., Costa-García
A., López-Martín S., Yáñez-Mó M. et al. Development of a rapid lateral
flow immunoassay test for detection of exosomes previously enriched
from cell culture medium and body fluids. J. Extracell. Vesicle.
2016; 5 (1): 31803. DOI: 10.3402/jev.v5.31803.
34. Wang Z., Wu H., Fine D., Schmulen J., Hu Y., Godin B. et al. Ciliated
micropillars for the microfluidic-based isolation of nanoscale lipid
vesicles. Lab. Chip. 2013; 13: 2879. DOI: 10.1039/c3lc41343h.
35. Meng Y., Zhang Y., Bühler M., Wang S., Asghari M., Stürchler A. et
al. Direct isolation of small extracellular vesicles from human blood
using viscoelastic microfluidics. Sci. Adv. 2023; 9: eadi5296. DOI:
10.1126/sciadv.adi5296.
36. Yang F., Liao X., Tian Y., Li G. Exosome separation using microfluidic
systems: size-based, immunoaffinity-based and dynamic
methodologies. Biotechnol. J. 2017; 12: 1600699. DOI: 10.1002/
biot.201600699.
37. Mogi K., Hayashida K., Yamamoto T. Damage-less handling of exosomes
using an ion-depletion zone in a microchannel. Anal. Sci. 2018;
34: 875-80. DOI: 10.2116/analsci.17P462.
38. Samoylova E.M., Kal’sin V.A., Bespalova V.A., Devichenskiy V.M.,
Baklaushev V.P. Exosomes: from biology to clinic. Geny i kletki.
2017; 12 (4): 7-19. DOI: 10.23868/20170702. (in Russian)
39. Grigor’eva A.E., Tamkovich S.N., Eremina A.V., Tupikin A.E., Kabilov
M.R., Chernykh V.V. et al. Lacrimal fluid exosomes of healthy humans:
isolation, identification and characterisation. Biomeditsinskaya
khimiya. 2016; 62(1): 99-106. DOI: 10.18097/PBMC20166201099.
(in Russian)
40. Tamkovich S.N., Tutanov O.S., Laktionov P.P. Exosomes: mechanisms
of origin, transport, biological activity, use in diagnostics.
Biologicheskie membrany. 2016; 33 (3): 163-75. hrome extension://
efaidnbmnnnibpcajpcglclefindmkaj/https://www.elibrary.ru/download/
elibrary_25921468_76328256.pdf. (in Russian)