Список литературы
Havelaar A.H., Kirk M.D., Torgerson P.R., Gibb H.J., Hald T., Lake R.J. et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLOS Medicine. 2010; 12: e1001923. Doi: 10.1371/journal.pmed.1001923.
Byzova N.A., Vinogradova S.V., Porotikova E.V., Terekhova U.D., Zherdev A.V., Dzantiev B.B. Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus. Biosensors (Basel). 2018; 8(4): E111. Doi: 10.3390/bios8040111.
Anfossi L., Di Nardo F., Cavalera S., Giovannoli C., Baggiani C. Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing. Biosensors (Basel). 2018; 9(1): E2. Doi: 10.3390/bios9010002.
Zhaoa S., Wangb S., Zhanga S., Liua J., Dong Y. State of the art: Lateral flow assay (LFA) biosensor for on-site rapid detection. Chin. Chem. Lett. 2018; 29(11): 1567-77. Doi: 10.1016/j.cclet.2017.12.008.
World Health Organization (WHO) Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2010; 12 (12): e1001923.
Sin M.L.Y., Mach K.E., Wong P.K., Liao J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014; 14(2): 225-44. Doi: 10.1586/14737159.2014.888313.
Peltomaa R., Glahn-Martínez B., Benito-Peña E., Moreno-Bondi M.C. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors. 2018;18: 4126.
Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018; 106:193-03. Doi: 10.1016/j.bios.2018.02.007.
Yalow R.S., Berson S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 1960; 39:1157-75.
Mak W.C., Beni V., Turner A.P.F. Lateral-flow technology: From visual to instrumental. Trends Analyt. Chem. 2016; 79: 297-05. Doi: 10.1016/j.trac.2015.10.017.
McPartlin D.A., O’Kennedy R.J. Point-of-care diagnostics, a major opportunity for change in traditional diagnostic approaches: Potential and limitations. Expert Rev. Mol. Diagn. 2014; 14: 979-98. Doi: 10.1586/14737159.2014.960516.
Fu X., Wen J., Li J., Lin H., Liu Y., Zhuang X., Tian C., Chen L. Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. Nanoscale. 2019; 11(33): 15530-36. Doi: 10.1039/c9nr04864b.
Zhao Y., Wang H.R., Zhang P.P., Sun C.Y., Wang X.C., Wang X.R. et.al. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016; 6: 21342.
Sastre P., Gallardo C., Monedero A., Ruiz T., Arias M., Sanz A., Rueda P. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet. Res. 2016; 12: 206. Doi: 10.1186/s12917-016-0831-4.
Jones C.H.D., Glogowska M., Locock L., Lasserson D.S. Embedding new technologies in practice — a normalization process theory study of point of care testing. BMC Health. Services Research. 2016; 16: 591. Doi: 10.1186/s12913-016-1834-3.
Kozel T.R., Burnham-Marusich A.R. Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. J. Clin. Microb. 2017; 55(8): 2313-20. Doi: 10.1128/JCM.00476-17.
WHO Infectious Disease Newsletter. Internet resource: access code. https://www.who.int/topics/infectious_diseases/factsheets/ru/(lato of the application 12.09.19).
Kim H., Chung D.R., Kang M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst. 2019; 144(8): 2460-66. Doi: 10.1039/c8an02295j.
Gitonga L.K., Boru W.G., Kwena A., Maritim M., Wamicwe J., Ransom J. Point of care testing evaluation of lateral flow immunoassay for diagnosis of cryptococcus meningitis in HIV-positive patients at an urban hospital in Nairobi, Kenya, 2017. BMC Res Notes. 2019; 12(1): 797. Doi: 10.1186/s13104-019-4829-4.
Kumar S., Bhushan P., Krishna V., Bhattacharya S. Tapered lateral flow immunoassay based point-of-care diagnostic device for ultrasensitive colorimetric detection of dengue NS1. Biomicrofluidics. 2018; 12(3): 034104. Doi: 10.1063/1.5035113.
Anfossi L., Di Nardo F., Cavalera S., Giovannoli C., Baggiani C. Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing. Biosensors (Basel). 2018; 9(1): E2. Doi: 10.3390/bios9010002.
Banerjee R., Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst. 2018; 143(9): 1970-96. Doi: 10.1039/c8an00307f.
Safenkova I.V., Panferov V.G., Panferova N.A., Varitsev Y.A., Zherdev A.V., Dzantiev B.B. Alarm lateral flow immunoassay for detection of the total infection caused by the five viruses. Talanta. 2019; 195: 739-44. Doi: 10.1016/j.talanta.2018.12.004. 9.
Zhao Y., Zhang Q., Meng Q., Wu F., Zhang L., Tang Y., Guan Y., An L. Quantum dots-based lateral flow immunoassay combined with image analysis for semiquantitative detection of IgE antibody to mite. Int. J. Nanomedicine. 2017; 12: 4805-12. Doi: 10.2147/IJN.S134539.
Jørgensen C.S., Uldum S.A., Sørensen J.F., Skovsted I.C., Otte S., Elverdal P.L. Evaluation of a new lateral flow test for detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigen. J. Microbiol. Methods. 2015; 116: 33-36. Doi: 0.1016/j.mimet.2015.06.014.
Rohrman B.A., Leautaud V., Molyneux E., Richards-Kortum R.R. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One. 2012; 7: e45611. Doi: 10.1371/journal.pone.0045611.
Boisen M.L., Oottamasathien D., Jones A.B., Millett M.M., Nelson D.S., Bornholdt Z.A. et al. Development of prototype filovirus recombinant antigen immunoassays. J. Infect. Dis. 2015; 212(2): 359-67. Doi: 10.1093/infdis/jiv353.
Nielsen K., Yu W.L., Kelly L., Bermudez R., Renteria T., Dajer A. et al. Development of a lateral flow assay for rapid detection of bovine antibody to Anaplasma marginale. J. Immunoassay Immunochem. 2008; 29: 10-8. Doi: 10.1080/15321810701734693.
Kamphee H., Chaiprasert A., Prammananan T., Wiriyachaiporn N., Kanchanatavee A., Dharakul T. Rapid molecular detection of multidrug-resistant tuberculosis by PCR-nucleic acid lateral flow immunoassay. PLos One. 2015; 10: e0137791. Doi: 10.1371/journal.pone.0137791.
Helfmann J., Netz U.J. Sensors in diagnostics and monitoring. Photonics & Lasers in Medicine. 2015; 4(2): 36-42. Doi: 10.1515/plm-2015-0012.
Posthuma-Trumpie G.A., Korf J., van Amerongen A. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry. 2008; 393(2): 569-82. Doi: 10.1007/s00216-008-2287-2.
Pilavaki E., Demosthenous A. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries. Sensors (Basel). 2017; 17(11): E2673. Doi: 10.3390/s17112673.
Kim C., Yoo Y.K., Han S.I., Lee J., Lee D., Lee K. et al. Battery operated preconcentration-assisted lateral flow assay. Lab Chip. 2017; 17(14): 2451-58. Doi: 10.1039/c7lc00036g.
Naidoo N., Ghai M., Moodley K., Mkize L., Martin L., McFarlane S., Rutherford S. Modified RS-LAMP assay and use of lateral flow devices for rapid detection of Leifsonia xyli subsp. xyli. Lett Appl Microbiol. 2017; 65(6): 496-03. Doi: 10.1111/lam.12799.
Hu S., Niu L., Zhao F., Yan L., Nong J., Wang C. et al. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Sci Rep. 2019; 9(1): 17888. Doi: 10.1038/s41598-019-54465-8.
Nelis J.L.D., Bura L., Zhao Y., Burkin K.M., Rafferty K., Elliott C.T., Campbell K. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones. Sensors (Basel). 2019; 19(23): E5104. Doi: 10.3390/s19235104.
Schwenke K.U., Spiehl D., Krauße M., Riedler L., Ruppenthal A., Villforth K. et al. Analysis of free chlorine in aqueous solution at very low concentration with lateral flow tests. Sci. Rep. 2019; 9(1): 17212. Doi: 10.1038/s41598-019-53687-0.
Borges M.A.S.B., Araújo Filho J.A., Soares R.B.A., Vidal J.E., Turchi M.D. False-negative result of serum cryptococcal antigen lateral flow assay in an HIV-infected patient with culture-proven cryptococcaemia. Med. Mycol. Case. Rep. 2019; 26: 64-6. Doi: 10.1016/j.mmcr.2019.10.009.
Foysal K.H., Seo S.E., Kim M.J., Kwon O.S., Chong J.W. Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone. Sensors (Basel). 2019; 19(21): E4812. Doi: 10.3390/s19214812.
Romeo A., Leunga T.S., Sánchez S. Smart biosensors for multiplexed and fully integrated point-of-care diagnostics. Lab. Chip. 2016; 16: 1957-61. Doi: 10.1039/C6LC90046A.
Lee S., Mehta S., Erickson D. Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses. Anal. Chem. 2016; 88(17): 8359-63. Doi: 10.1021/acs.analchem.6b01828.
Yen C.W., de Puig H., Tam J.O., Gómez-Márquez J., Bosch I., Hamad-Schifferli K., Gehrke L. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab. Chip. 2015; 15(7): 1638-41. Doi: 10.1039/C5LC00055F.
Edwards K.A., Korff R., Baeumner A.J. Liposome-Enhanced Lateral-Flow Assays for Clinical Analyses. Methods Mol. Biol. 2017; 1571: 407-34. Doi: 10.1007/978-1-4939-6848-0_25.
Koczula K.M., Gallotta A. Lateral flow assays. Essays Biochem. 2016; 60(1): 111-20. Doi: 10.1042/EBC20150012.
Guo C., Zhong L.L., Yi H.L., Chen M. Clinical value of fluorescence lateral flow immunoassay in diagnosis of influenza A in children. Zhongguo dang dai er ke za zhi. 2016; 18(12): 1272-6.
Berger P., Sturgeon C. Pregnancy testing with hCG-future prospects. Trends Endocrinol. Metab. 2014; 25(12): 637-48. Doi: 10.1016/j.tem.2014.08.004.
Chen J., Fang Z., Lie P., Zeng L. Computational lateral flow biosensor for proteins and small molecules: a new class of strip logic gates. Anal. Chem. 2012; 84: 6321-5. Doi: 10.1021/ac301508b.
Campbell J.P., Heaney J.L., Shemar M., Baldwin D., Griffin A.E., Oldridge E. et al. Development of a rapid and quantitative lateral flow assay for the simultaneous measurement of serum κ and λ immunoglobulin free light chains (FLC): inception of a new near-patient FLC screening tool. Clin. Chem. Lab. Med. 2017; 55(3): 424-34. Doi: 10.1515/cclm-2016-0194.
Pilavaki E., Demosthenous A. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries. Sensors (Basel). 2017; 17(11): E2673. Doi: 10.3390/s17112673.
Hsieh H.V., Dantzler J.L., Weigl B.H. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics (Basel). 2017; 7(2): E29. Doi: 10.3390/diagnostics7020029.
Wang J., Katani R., Li L., Hegde N., Roberts E.L., Kapur V., DebRoy C. Rapid detection of Escherichia coli O157 and shiga toxins by lateral flow immunoassays. Toxins. 2016; 8: 92. Doi: 10.3390/toxins8040092.
Morioka K., Fukai K., Yosihda K., Kitano R., Yamazoe R., Yamada M. et al. Development and evaluation of a rapid antigen detection and serotyping lateral flow antigen detection system for foot-and-mouth disease virus. PLoS ONE. 2015; 10: e0134931. Doi: 10.1371/journal.pone.0134931.
Fuchiwaki Y., Goya K., Tanaka M. Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film. Anal. Sci. 2018; 34(1): 57-63. Doi: 10.2116/analsci.34.57.