Аннотация
Разнообразие факторов вирулентности делает представителей патотипа уропатогенной Escherichia coli (UPEC) чрезвы-
чайно гетерогенными с точки зрения патогенного потенциала и эпидемической значимости. Цель исследования — изучить
распространенность детерминант вирулентности у штаммов E. coli, выделенных от пациентов с инфекциями мочевы-
водящих путей, во внутрибольничных (n=76) и внебольничных (n=33) условиях, оценить связь патогенного потенциала с
филогруппой и антибиотикочувствительностью. Методом ПЦР штаммы проанализированы на присутствие 15 генов па-
тогенности, кодирующих адгезины, инвазины, белки наружной мембраны (fimH, papC, sfaDE, afa/draBC, ibeA, yqi, upaG, flu,
iha, ompT), токсины (cnf1, hlyA, usp) и факторы устойчивости к системам защиты организма (kpsMTII, iroN). Ряд генов,
ассоциированных с вирулентностью (fimH, papC, flu, iha, kpsMTII), широко распространены в обеих группах UPEC, а мно-
жественные гены вирулентности (5 и более) несли 55,3% нозокомиальных и 45,5% штаммов из амбулаторий. Среди нозо-
комиальных культур чаще, чем в культурах от пациентов с внебольничными инфекциями, встречались гены yqi, ibeA, usp.
Нозокомиальные культуры в 78,9% случаев принадлежали к филогруппе В2, а «поликлинические» – только в 36,4%. Не было
различий между двумя группами по частоте встречаемости продуцентов бета-лактамаз расширенного спектра (БЛРС).
У нозокомиальных «циркулирующих» UPEC чаще, чем в группе «индивидуальных», детектировали гены fimH, afa/DraBC,
usp, cnf1, обнаруживались штаммы, продуцирующие БЛРС, а принадлежность к филогруппе В2 была 100%. В отделениях
реанимации и интенсивной терапии (ОРИТ) 80% штаммов были носителями множественных генов вирулентности и про-
дуцировали БЛРС. По сравнению с отделениями хирургии и терапии в отделениях ОРИТ штаммы с генотипом usp+, yqi+,
iha+ обнаруживались чаще.
Annotation
Because of the diversity of virulence factors members of the uropathogenic E. coli (UPEC) pathotype are extremely heterogeneous
in terms of pathogenic potential and epidemiological significance. The purpose of the study was to investigate the prevalence of
virulence determinants of E. coli strains isolated from patients with urinary tract infections in nosocomial (n=76) and communityacquired
(n=33) conditions and to assess the relationship of pathogenic potential with phylogroup and antibiotic sensitivity. We used
PCR to check if the bacteria had 15 virulent genes. These genes code adhesins, invasins and outer membrane proteins (fimH, papC,
sfaDE, afa/draBC, ibeA, yqi, upaG, flu, iha, ompT), toxins (cnf1, hlyA, usp) and factors of resistance to macroorganism defence
systems (kpsMTII, iroN). Several virulent-associated genes (fimH, papC, flu, iha, kpsMTII) were prevalent in both UPEC groups
and multiple virulent genes (5 or more) were found in 55.3% of nosocomial and 45.5% of outpatient strains. However, the yqi, ibeA
and usp genes were found more often among nosocomial cultures than in cultures from patients with community-acquired infections.
Nosocomial cultures in 78.9% of cases belonged to phylogroup B2 but “out hospital” cultures only in 36.4%. Interestingly, there
were no differences between the two groups of cultures in the incidence of extended-spectrum beta-lactamase (ESBL) producers. In
the group of nosocomial “circulating” UPECs more often than in the “individual” group genes fimH, afa/DraBC, usp and cnf1 were
detected also “circulating” strains more often were producents ESBLs and in 100% were memberships of phylogroup B2. In intensive
care units (ICU) 80% of strains carried multiple virulence genes and produced ESBLs. In the ICU departments strains with the usp+,
yqi+ and iha+ genotypes were detected more often compared to the departments of surgery and therapy.
Key words: uropathogenic Escherichia coli (UPEC); nosocomial and community-acquired infections, genes associated with virulence,
phylogroup B2, extended spectrum beta-lactamases (ESBLs)
Список литературы
Л И Т Е РАТ У РА ( П П . 1 , 2 , 4 , 6 , 7 , 9 — 1 1 , 1 3 —
2 4 , 2 6 — 3 1 С М . R E F E R E N C E S )
3. Бухарин О.В., Гриценко В.А., Вялкова А.А. Факторы уропатоген-
ности бактерий: роль в патогенезе и значение в диагностике пие-
лонефрита. Нефрология и диализ. 2001; 3 (4): 469-75.
5. Слукин П.В., Асташкин Е.И., Асланян Е.М., Ершова М.Г., Поле-
таева Е.Д., Светоч Э.А. и др. Характеристика вирулентных штам-
мов Escherichia coli, выделенных от пациентов с урологической
инфекцией. Журнал микробиологии, эпидемиологии и иммунобио-
логии. 2021; 98: 671-84.
8. Кузнецова М.В., Проворова С.В., Кубарев О.Г., Юдин Д.C., Кари-
мова Н.В., Баяндина Н.В. и др. Сравнительная характеристика
штаммов уропатогенной Escherichia coli, выделенных в условиях
поликлиники и стационара. Урология. 2018; 6: 37-44.
12. Казанцев А.В., Осина Н.А., Глинская Т.О., Кошелева О.Н., Макси-
мов Ю.В., Девдариани З.Л. и др. Факторы вирулентности и фило-
генетическая характеристика уропатогенных штаммов Eschericihia
coli, выделенных на территории г. Саратова. Проблемы особо
опасных инфекций. 2019; 4: 56-60.
25. Кузнецова М.В., Гизатуллина Ю.С. Характеристика уропатоген-
ных изолятов Escherichia coli, выделенных в условиях стациона-
ра. Клиническая лабораторная диагностика. 2021; 66(4): 248-56.
DOI: 10.51620/0869-2084-2021-66-4-248-256.
R E F E R E NC E S
1. Radera S., Srivastava S., Agarwal J. Virulence genotyping and multidrug
resistance pattern of Escherichia coli isolated from communityacquired
and hospital-acquired urinary tract infections. Cureus. 2022;
14(9): e29404. DOI:10.7759/cureus.29404.
2. Johnson J.R., Russo T.A. Molecular epidemiology of extraintestinal
pathogenic (uropathogenic) Escherichia coli. Int. J. Med. Microbiol.
2005; 295(6-7): 383-404. DOI: 10.1016/j.ijmm.2005.07.005.
3. Bukharin O.V., Gritsenko V.A., Vyalkova A.A. Factors of uropathogenicity
of bacteria: role in pathogenesis and significance in the diagnosis
of pyelonephritis. Nefrologiya i dializ. 2001; 3(4): 469-75.
(in Russian)
4. Toval F., Köhler C.D., Vogel U., Wagenlehner F., Mellmann A., Fruth
A. et al. Characterization of Escherichia coli isolates from hospital inpatients
or outpatients with urinary tract infection. J. Clin. Microbiol.
2014; 52(2): 407-18. DOI: 10.1128/JCM.02069-13.
5. Slukin P.V., Astashkin E.I., Aslanyan E.M., Ershova M.G., Poletaeva
E.D., Svetoch E.A. et. al. Characteristics of virulent strains of Escherichia
coli isolated from patients with urological infection. Zhurnal
mikrobiologii, epidemiologii I immunobiologii. 2021; 98: 671-84.
DOI: 10.36233/0372-9311-134. (in Russian)
6. Gonçalves L.F., de Oliveira Martins-Júnior P., de Melo A.B.F., da
Silva R.C.R.M., de Paulo Martins V., Pitondo-Silva A., de Campos
T.A. Multidrug resistance dissemination by extended-spectrum
β-lactamase-producing Escherichia coli causing community-acquired
urinary tract infection in the Central-Western Region, Brazil. J. Glob.
Antimicrob. Resist. 2016; 6: 1-4. DOI: 10.1016/j.jgar.2016.02.003.
7. Ballesteros-Monrreal M.G., Mendez-Pfeiffer P., Barrios-Villa E.,
Arenas-Hernández M.M.P., Enciso-Martínez Y., Sepúlveda-Moreno
C.O. et al. Uropathogenic Escherichia coli in Mexico, an Overview
of Virulence and Resistance Determinants: Systematic Review and
Meta-analysis. Arch. Med. Res. 2023; 54(3): 247-60. DOI: 10.1016/j.
arcmed.2023.01.001.
8. Kuznetsova M.V., Provorova S.V., Kubarev O.G., Yudin D.C.,
Karimova N.V., Bayandina N.V. et al. Comparative characteristics of
uropathogenic Escherichia coli strains isolated in a clinic and hospital.
Urologiya. 2018; 6: 37-44. DOI: 10.18565/urology.2018.6.37-44. (in
Russian)
9. Ciccarelli F.D., Doerks T., von Mering C., Creevey C.J., Snel B., Bork
P. Toward automatic reconstruction of a highly resolved tree of life.
Science. 2006; 311(5765):1283-7. DOI: 10.1126/science.1123061.
10. Yousefipour M., Rezatofighi S.E., Ardakani M.R. Detection and
characterization of hybrid uropathogenic Escherichia coli strains
among E. coli isolates causing community-acquired urinary
tract infection. J. Med. Microbiol. 2023; 72(2). DOI: 10.1099/
jmm.0.001660.
11. Whelan S., Lucey B., Finn K. Uropathogenic Escherichia coli
(UPEC)-associated urinary tract infections: the molecular basis for
challenges to effective treatment. Microorganisms. 2023; 11(9): 2169.
DOI: 10.3390/microorganisms11092169.
12. Kazantsev A.V., Osina N.A., Glinskaya T.O., Kosheleva O.N.,
Maksimov Yu.V., Devdariani Z.L. et al. Virulence factors and
phylogenetic characteristics of uropathogenic Escherichia coli strains
isolated in the city of Saratov. Problemy osobo opasnykh infektsiy.
2019; 4: 56-60. DOI: 10.21055/0370-1069-2019-4-56-60. (in Russian)
13. Dias R.C., Moreira B.M., Riley L.W. Use of fimH single-nucleotide
polymorphisms for strain typing of clinical isolates of Escherichia
coli for epidemiologic investigation. J. Clin. Microbiol. 2010; 48(2):
483-8. DOI: 10.1128/JCM.01858-09.
14. Skjøt-Rasmussen L., Ejrnæs K., Lundgren B., Hammerum A.M.,
Frimodt-Møller N. Virulence factors and phylogenetic grouping of
Escherichia coli isolates from patients with bacteraemia of urinary
tract origin relate to sex and hospital- vs. community-acquired
origin. Int. J. Med. Microbiol. 2012; 302(3): 129-34. DOI: 10.1016/j.
ijmm.2012.03.002.
15. Nipič D., Podlesek Z., Budič M., Črnigoj M., Žgur-Bertok D. Escherichia
coli – uropathogenic-specific protein, Usp, is a bacteriocinlike
genotoxin. J. Infect. Dis. 2013; 208(10):1545-52. DOI: 10.1093/
infdis/jit480.
16. Naboka Y.L, Mavzyutov A.R, Kogan M.I, Gudima I.A, Dzhalagoniya
K.T, Ivanov S.N, Naber K.G. The gene profile of Enterobacteriaceae
virulence factors in relation to bacteriuria levels between
the acute episodes of recurrent uncomplicated lower urinary tract
infection. Expert Rev. Anti-Infect. Ther. 2021; 19(8):1061-6. DOI:
10.1080/14787210.2021.1866986.
17. Yamamoto S., Nakano M., Terai A., Yuri K., Nakata K., Nair G.B.
et al. The presence of the virulence island containing the usp gene in
uropathogenic Escherichia coli is associated with urinary tract infection
in an experimental mouse model. J. Urol. 2001; 165(4): 1347-51.
18. Antão E.M., Wieler L.H., Ewers C. Adhesive threads of extraintestinal
pathogenic Escherichia coli. Gut Pathog. 2009; 1(1): 1-22. DOI:
10.1186/1757-4749-1-22.
19. Tanabe R.H.S., Dias R.C.B., Orsi H., de Lira D.R.P., Vieira M.A., dos
Santos L.F. et al. Haracterization of uropathogenic Escherichia coli
reveals hybrid isolates of uropathogenic and diarrheagenic (UPEC/
DEC) E. coli. Microorganisms. 2022; 10(3): 645. DOI: 10.3390/
microorganisms10030645.
20. De Souza G.M., Neto E.R.D.S., da Silva A.M., Iacia M.V.M.S., Rodrigues
M.V.P., Cataneli Pereira V. et al. Comparative study of genetic
diversity, virulence genotype, biofilm formation and antimicrobial
resistance of uropathogenic Escherichia coli (UPEC) isolated from
nosocomial and community acquired urinary tract infections. Infect.
Drug Resist. 2019; 12: 3595-3606. DOI: 10.2147/IDR.S228612.
21. Lavigne J.P., Bruyère F., Bernard L., Combescure C., Ronco E.,
Lanotte P. et al. Resistance and virulence potential of uropathogenic
Escherichia coli strains isolated from patients hospitalized in urology
departments: a French prospective multicentre study. J. Med. Microbiol.
2016; 65(6): 530-7. DOI: 10.1099/jmm.0.000247.
22. Najafi A., Hasanpour M., Askary A., Aziemzadeh M., Hashemi N. Distribution
of pathogenicity island markers and virulence factors in new
phylogenetic groups of uropathogenic Escherichia coli isolates. Folia
Microbiol. 2017; 63(3): 335-43. DOI: 10.1007/s12223-017-0570-3.
23. Sheikh A.F., Goodarzi H., Yadyad M.J., Aslani S., Amin M., Jomehzadeh
N. et. al. Virulence-associated genes and drug susceptibility
patterns of uropathogenic Escherichia coli isolated from patients with
urinary tract infection. Infect. Drug Resist. 2019; 12: 2039-47. DOI:
10.2147/IDR.S199764.
24. Qin X., Hu F., Wu S., Ye X., Zhu D., Zhang Y. et al. Comparison of adhesin
genes and antimicrobial susceptibilities between uropathogenic
and intestinal commensal Escherichia coli strains. PLoS One. 2013;
8(4): e61169. DOI: 10.1371/journal.pone.0061169.
25. Kuznetsova M.V., Gizatullina Yu.S. Characteristics of uropathogenic
Escherichia coli isolates isolated in a hospital setting. Klinicheskaya
Laboratornaya Diagnostika. 2021; 66(4): 248-56. DOI:
10.51620/0869-2084-2021-66-4-248-256. (in Russian)
26. Goluszko P., Moseley S.L., Truong L.D., Kaul A., Williford J.R.,
Selvarangan R. et al. Development of experimental model of chronic
pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae:
mutation in the dra region prevented tubulointerstitial nephritis. J.
Clin Invest. 1997; 99(7): 1662-72. DOI: 10.1172/JCI119329.
27. Blum G., Falbo V., Caprioli A., Hacker J. Gene clusters encoding
the cytotoxic necrotizing factor type 1, Prs-fimbriae and alphahemolysin
form the pathogenicity island II of the uropathogenic
Escherichia coli strain J96. FEMS Microbiol Lett. 1995; 126(2): 189-
95. DOI:10.1111/j.1574-6968.1995.tb07415.x.
28. Flatau G., Lemichez E., Gauthier M., Chardin P., Paris S., Fiorentini
C. et al. Toxin-induced activation of the G protein p21 Rho
by deamidation of glutamine. Nature. 1997; 387(6634): 729-33.
DOI:10.1038/42743.
29. Tsoumts Meda L.L., Landraud L., Petracchini S., Descorps-Declere
S., Perthame E., Nahori M.-A. et al. The cnf1 gene is associated
with an expanding Escherichia coli ST131 H30Rx/C2 subclade and
confers a competitive advantage for gut colonization. Gut Microbes.
2022; 14(1): 1. DOI: 10.1080/19490976.2022.2121577.
30. Rippere-Lampe K.E., Lang M., Ceri H., Olson M., Lockman H.A.,
O’Brien A.D. Cytotoxic necrotizing factor type 1-positive Escherichia
coli causes increased inflammation and tissue damage to the prostate
in a rat prostatitis model. Infect. Immun. 2001; 69(10): 6515-9. DOI:
10.1128/IAI.69.10.6515-6519.2001.
31. Rippere-Lampe K.E., O’Brien A.D., Conran R., Lockman H.A. Mutation
of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1))
attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun.
2001; 69(6): 3954-64. DOI: 10.1128/IAI.69.6.3954-3964.2001.