Список литературы
Edwards M., Singh M., Selesny S., Cooper J.S. Hyperbaric Treatment of Thermal Burns. 2020 Aug 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 29262193.
Geng K., Liu Y., Yang Y., Ding X., Tian X., Liu H. et al. Incidence and Prognostic Value of Acute Coagulopathy After Extensive Severe Burns. J. Burn. Care Res. 2020; 41:544-9. https://doi.org/10.1093/jbcr/irz178 PMID: 32036383.
Jeschke M.G., van Baar M.E., Choudhry M.A., Chung K.K., Gibran N.S., Logsetty S. Burn injury. Nat. Rev. Dis. Primers. 2020; 6:11. https://doi.org/10.1038/s41572-020-0145-5 PMID: 32054846; PMCID: PMC7224101.
Zhang P., Zou B., Liou Y.C., Huang C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma. 2021; 9: tkaa047. https://doi.org/10.1093/burnst/tkaa047 PMID: 33654698; PMCID: PMC7901709.
Gill A.L., Bell C.N. Hyperbaric oxygen: its uses, mechanisms of action and outcomes. Q.J.M. 2004; 97:385-95.
Criado P.R., Miot H.A., Pincelli T.P.H., Fabro A.T. From dermatological conditions to COVID-19: Reasoning for anticoagulation, suppression of inflammation, and hyperbaric oxygen therapy. Dermatol. Ther. 2021;34:14565. https://doi.org/10.1111/dth.14565 Epub 2020 Nov 30. PMID: 33219572; PMCID: PMC7744832.
Smolle C., Lindenmann J., Kamolz L., Smolle-Juettner F.M. The History and Development of Hyperbaric Oxygenation (HBO) in Thermal Burn Injury. Medicina (Kaunas). 2021;57:49. https://doi.org/10.3390/medicina57010049 PMID: 33430046; PMCID: PMC7827759.
Harch P.G. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med. Gas. Res. 2020; 10:61-2. https://doi.org/10.4103/2045-9912.282177
Oley M. H., Oley M. C., Aling D., Kalangi J. A., Islam A. A., Hatta M. et al. Effects of hyperbaric oxygen therapy on the healing of thermal burns and its relationship with ICAM-1: a case-control study. Ann. Med. Surg. 2021; 61:104-9. https://doi.org/10.1016/j.amsu.2020.12.025
Paganini M., Bosco G., Perozzo F.A.G., Kohlscheen E., Sonda R, Bassetto F., Garetto G., Camporesi E.M., Thom S.R. The Role of Hyperbaric Oxygen Treatment for COVID-19: A Review. Adv. Exp. Med. Biol. 2021;1289:27-35. https://doi.org/10.1007/5584_2020_568 PMID: 32696443; PMCID: PMC7979083.
Thom S.R. Hyperbaric oxygen: its mechanisms and efficacy. Plast. Reconstr. Surg. 2011; 127 :131-41. https://doi.org/10.1097/PRS.0b013e3181fbe2bf
Gutmann C., Siow R., Gwozdz A.M., Saha P., Smith A. Reactive Oxygen Species in Venous Thrombosis. Int. J. Mol. Sci. 2020; 21:1918. https://doi.org/10.3390/ijms21061918 PMID: 32168908; PMCID: PMC7139897.
Golino P., Ragni M., Cirillo P., Avvedimento V. E., Feliciello A., Esposito N. et al. Effects of tissue factor induced by oxygen free radicals on coronary ow during reperfusion. Nat. Med. 1996; 2: 35-40.
Djordjevic T., Pogrebniak A., BelAiba R.S., Bonello S., Wotzlaw C., Acker H. et al. The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells. Free Radic. Biol. Med. 2005; 38: 616-30.
Glaser C.B., Morser J., Clarke J.H., Blasko E., McLean K., Kuhn I. et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J. Clin. Investig. 1992; 90: 2565-73.
Upchurch G.R., Ramdev N., Walsh M.T., Loscalzo J. Prothrombotic consequences of the oxidation of brinogen and their inhibition by aspirin. J. Thromb. Thrombolysis. 1998; 5:9-14.
De Cristofaro R., Landol R. Oxidation of human alpha-thrombin by the myeloperoxidase-H2O2-chloride system: Structural and functional effects. Thromb. Haemost. 2000; 83: 253-61.
Imperatore F., Cuzzocrea S., De Lucia D., Sessa M., Rinaldi B., Capuano A. et al. Hyperbaric oxygen therapy prevents coagulation disorders in an experimental model of multiple organ failure syndrome. Intensive Care Med. 2006;32:1881-8.
Opal S.M. Interactions between coagulation and inflammation. Scand. J. Infect. Dis. 2003; 35:545-54.
Roemisch J. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul. Fibrinolysis. 2002; 13:657-70.
Levy J.H., Sniecinski R.M., Welsby I.J., Levi M. Antithrombin: anti-inflammatory properties and clinical applications. Thromb. Haemost. 2016; 115:712-28. https://doi.org/10.1160/TH15-08-0687 Epub 2015 Dec 17. PMID: 26676884.
Dinarvand P., Moser K.A., Protein C Deficiency. Arch. Pathol. Lab. Med. 2019;143:1281-5. https://doi.org/10.5858/arpa.2017-0403-RS Epub 2019 Feb 1. PMID: 30702334.
Grover S.P., Mackman N. Intrinsic Pathway of Coagulation and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2019; 39:331-8. https://doi.org/10.1161/ATVBAHA.118.312130 PMID: 30700128.
Randeria S.N., Thomson G.J.A., Nell T.A., Roberts T., Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc. Diabetol. 2019; 18:72. https://doi.org/10.1186/s12933-019-0870-9 PMID: 31164120; PMCID: PMC6549308.
Преснякова М.В., Сидоркина А.Н., Сидоркин В.Г. Нарушения системы гемостаза в острый период ожоговой болезни. Тромбоз, гемостаз и реология. 2005; 3: 44
Doolittle R.F. Structural Basis of Signaling Events Involving Fibrinogen and Fibrin. In Handbook of Cell Signalling, 2nd ed.; Academic Press: San Diego, CA, USA, 2010; Chapter 17: 111-4.
Tyagi N., Roberts A.M., Dean W.L., Tyagi S.C., Lominadze D. Fibrinogen induces endothelial cell permeability. Mol. Cell Biochem. 2008; 307(1-2):13-22. https://doi.org/10.1007/s11010-007-9579-2 Epub. 2007 Sep 12. PMID: 17849175; PMCID: PMC2811266.
Kowalewski M., Fina D., Słomka A., Raffa G.M., Martucci G., Lo Coco V. et.al. De Piero M.E., Ranucci M., Suwalski P, Lorusso R. COVID-19 and ECMO: the interplay between coagulation and inflammation-a narrative review. Crit. Care. 2020; 24(1):205. https://doi.org/10.1186/s13054-020-02925-3 PMID: 32384917; PMCID: PMC7209766.
Mancini I., Baronciani L., Artoni A., Colpani P., Biganzoli M., Cozzi G. et al. J. Thromb. Haemost. 2021; 19:513-21. https://doi.org/10.1111/jth.15191 Epub 2020 Dec 18. PMID: 33230904; PMCID: PMC7753796.
Tischer A., Machha V.R., Frontroth J.P., Brehm M.A., Obser T., Schneppenheim R. et al. Enhanced local disorder in a clinically elusive von willebrand factor provokes high-affinity platelet clumping. J. Mol. Biol. 2017; 429:2161-77. https://doi.org/10.1016/j.jmb.2017.05.013
Bhogal P., Jensen M., Hart D., Makalanda L., Collins G.B., Spooner O., Jaffer O. Von Willebrand factor. Clin. Med. (Lond). 2020; 20(6):e279. https://doi.org/10.7861/clinmed.Let.20.6.3 PMID: 33199342; PMCID: PMC7687332.
Jagau H., Behrens I.K., Lahme K., Lorz G., Koster R.W., Schneppenheim R. et al. Von Willebrand factor mediates pneumococcal aggregation and adhesion in blood flow. Front. Microbiol. 2019; 10:511. https://doi.org/10.3389/fmicb.2019.00511
Муллакандов С.А., Титова М.И., Каем Р.И. Роль нарушений свертывания крови в патогенезе развития желудочно-кишечных кровотечений при ожоговой болезни. Клиническая медицина. 1984; 5: 85-95
Tahlan A., Ahluwalia J. Factor XIII: congenital deficiency factor XIII, acquired deficiency, factor XIII A-subunit, and factor XIII B-subunit. Arch. Pathol. Lab. Med. 2014;138(2):278-81. https://doi.org/10.5858/arpa.2012-0639-RS PMID: 24476525
Katona E.E., Ajzner E., Toth K., Karpati L., Muszbek L. Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. J. Immunol. Methods. 2001;258(1-2):127-35.
Duval C., Allan P., Connell S.D., Ridger V.C., Philippou H., Ariëns R.A. Roles of fibrin α- and γ-chain specific cross-linking by FXIIIa in fibrin structure and function. Thromb. Haemost. 2014;111(5):842-50. https://doi.org/10.1160/TH13-10-0855 Epub 2014 Jan 16. PMID: 24430058.
Byrnes J.R., Duval C., Wang Y., Hansen C.E., Ahn B., Mooberry M.J. et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood. 2015;126(16):1940-8. https://doi.org/10.1182/blood-2015-06-652263 Epub 2015 Aug 31. PMID: 26324704; PMCID: PMC4608241.
Memtsas V.P., Arachchillage D.R.J., Gorog D.A. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int. J. Mol. Sci. 2021; 22(3):1472. https://doi.org/10.3390/ijms22031472
Schroeder V., Kohler H.P. Factor XIII: Structure and Function. Semin. Thromb. Hemost. 2016 ;42(4):422-8.
Byrnes J.R., Wolberg A.S. Newly-Recognized Roles of Factor XIII in Thrombosis. Semin. Thromb. Hemost. 2016;42(4):445-54. https://doi.org/10.1055/s-0036-1571343
Сидор Н.В., Момот А.П. Фактор XIII. Структура, функция, методы определения, роль в патологии человека. Тромбоз, гемостаз и реология. 2003; 13 (1):10-21
Pitkänen H.H., Jouppila A., Lemponen M., Ilmakunnas M., Ahonen J., Lassila R. Factor XIII deficiency enhances thrombin generation due to impaired fibrin polymerization — An effect corrected by Factor XIII replacement. Thromb. Res. 2017; 149:56-61. https://doi.org/10.1016/j.thromres.2016.11.012 Epub 2016 Nov 16. PMID: 27902939.
Levi M., van der Poll T. Coagulation and sepsis. Thromb. Res. 2017; 149:38-44. https://doi.org/10.1016/j.thromres.2016.11.007
Gupta N., Zhao Y.Y., Evans C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019; 181:77-83. https://doi.org/10.1016/j.thromres.2019.07.013
Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18:844-7. https://doi.org/10.1111/jth.14768
Hess K., Grant P.J. Inflammation and thrombosis in diabetes. Thromb. Haemost. 2011; 105:43-54. https://doi.org/10.1160/THS10-11-0739
Кречетова А.В., Галстян Г.М., Васильев С.А., Орел Е.Б., Сариди Э.Ю. и др. Оценка тяжести состояния больных сепсисом в динамике по соотношению фибринолитической и антикоагулянтной активности плазмы крови. Гематология и трансфузиология. 2009; 54 (6): 23-8
Harr J.N., Moore E.E., Ghasabyan A., Chin T.L., Sauaia A., Banerjee A. et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013; 39(1):45-9. https://doi.org/10.1097/SHK.0b013e3182787122
Cochrane C., Chinna S., Um J.Y., Dias J.D., Hartmann J., Bradley J., et al. Brooks A. Site-Of-Care Viscoelastic Assay in Major Trauma Improves Outcomes and Is Cost Neutral Compared with Standard Coagulation Tests. Diagnostics (Basel). 2020;10(7):486. https://doi.org/10.3390/diagnostics10070486 PMID: 32708960; PMCID: PMC7400090.
Marsden N.J., Van M., Dean S., Azzopardi E.A., Hemington-Gorse S., Evans P.A. et al. Measuring coagulation in burns: an evidence-based systematic review. Scars Burn Heal. 2017; 3:1-13. https://doi.org/10.1177/2059513117728201 PMID: 29799542; PMCID: PMC5965330.
Воробьев П.А., Момот А.П., Зайцев А.А., Елыкомов В.А., Сычев Д.А., Краснова Л.С. и др. Синдром диссеминированного внутрисосудистого свертывания крови при инфекции COVID-19. 2020. URL: https://doi.org/10.18565/therapy.2020.5.25-34 (Дата обращения 2020 — 12 — 09)