Список литературы
Banin E., Hughes D., Kuipers O.P. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 2017; 41(3): 450-2. https://doi.org/10.1093/femsre/fux016
CDC’s Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report). Avaiable at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed 26 August 2020).
Revez J., Espinosa L., Albiger B., Leitmeyer K. C. Struelens M.J., Tóth Á. et al. Survey on the use of whole-genome sequencing for infectious diseases surveillance: rapid expansion of European national capacities, 2015-2016. Front. Public Health. 2017; 5; 347. https://doi.org/10.3389/fpubh.2017.00347
Schadt E.E., Turner S., Kasarskis A. A window into third-generation sequencing. Hum. Mol. Genet. 2010; 19(R2): R227-R240. https://doi.org/10.1093/hmg/ddq416
Rothberg J., Myers J. Semiconductor sequencing for life. J. Biomol. Tech. JBT. 2011; 22(Suppl): S41-S2.
Loman N.J., Quick J., Simpson J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods. 2015; 12(8): 733-5. https://doi.org/10.1038/nmeth.3444
Schmid M., Frei D., Patrignani A., Schlapbach R., Frey J. E., Remus-Emsermann, M. N., Ahrens, C. H. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res. 2018; 46(17): 8953-65. https://doi.org/10.1093/nar/gky726
Chin C.S., Alexander D.H., Marks P., Klammer A.A., Drake J., Heiner C. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. methods. 2013; 10(6): 563-9. https://doi.org/10.1038/nmeth.2474
Nagarajan N., Pop M. Sequence assembly demystified. Nat. Rev. Genet. 2013. 2013; 14(3): 157-67. https://doi.org/10.1038/nrg3367
Rhoads A., Au K.F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015; 13(5): 278-89. https://doi.org/10.1016/j.gpb.2015.08.002
Stoddart D., Heron A.J., Mikhailova E., Maglia G., Bayley H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl. Acad. Sci. USA. 2009; 106(19): 7702-7. https://doi.org/10.1073/pnas.0901054106
Lu H., Giordano F., Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics. 2016; 14(5): 265-79. https://doi.org/10.1016/j.gpb.2016.05.004
Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. biotechnol. 2018; 36(4): 338-45. https://doi.org/10.1038/nbt.4060
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012; 67(11): 2640-4. https://doi.org/10.1093/jac/dks261
Alcock B.P., Raphenya A.R., Lau T.T., Tsang K.K., Bouchard M., Edalatmand, A. et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020; 48(D1): D517-D25. https://doi.org/10.1093/nar/gkz935
Feldgarden M., Brover V., Haft D.H., Prasad A.B., Slotta D.J., Tolstoy I. et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019; 63(11): e00483-19. https://doi.org/10.1128/AAC.00483-19
Lim M.Y., Cho Y., Rho M. Diverse distribution of resistomes in the human and environmental microbiomes. Curr. Genomics. 2018; 19(8): 701-11. https://doi.org/10.2174/1389202919666180911130845
Ruppé E., Ghozlane A., Tap J., Pons N., Alvarez A.S., Maziers N. et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat. Microbiol. 2019; 4(1): 112-23. https://doi.org/10.1038/s41564-018-0292-6
Arango-Argoty G., Garner E., Pruden A., Heath L.S., Vikesland P., Zhang L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018; 6(1): 1-15. https://doi.org/10.1186/s40168-018-0401-z
Gibson M.K., Forsberg K.J., Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015; 9(1): 207-16. https://doi.org/10.1038/ismej.2014.106
Chowdhury A.S., Khaledian E., Broschat S.L. Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method. J. Appl. Microbiol. 2019; 127(6): 1656-64. https://doi.org/10.1111/jam.14413
Chowdhury A.S., Call D.R., Broschat S.L. Antimicrobial resistance prediction for gram-negative bacteria via game theory-based feature evaluation. Sci. Rep. 2019; 9: 14487. https://doi.org/10.1038/s41598-019-50686-z
Su M., Satola S.W., Read T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2019; 57(3): e01405-18. https://doi.org/10.1128/JCM.01405-18
Hunt M., Mather A.E., Sánchez-Busó L., Page A.J., Parkhill J., Keane J.A., Harris S.R. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genomics. 2017; 3(10): e000131. https://doi.org/10.1099/mgen.0.000131
Hunt M., Bradley P., Lapierre S.G., Heys S., Thomsit M., Hall M.B. et al. Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Res. 2019; 4: 191. https://doi.org/10.12688/wellcomeopenres.15603.1
Yao H., Yiu S.-M. Deep analysis and optimization of CARD antibiotic resistance gene discovery models. BMC Genomics. 2019; 20: 914. https://doi.org/10.1186/s12864-019-6318-5
Angers-Loustau A., Petrillo M., Bengtsson-Palme J., Berendonk T., Blais B., Chan K.G et al. The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies. F1000Res. 2018; 7: 459. https://doi.org/10.12688/f1000research.14509.2
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19(5): 455-77. https://doi.org/10.1089/cmb.2012.0021
Lee I., Chalita M., Ha S.M., Na S.I., Yoon S.H., Chun J. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2017; 67(6): 2053-7. https://doi.org/10.1099/ijsem.0.001872
Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25: 1043-55. https://doi.org/10.1101/gr.186072.114
Hughes D., Andersson D.I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol. Rev. 2017; 41(3): 374-91. https://doi.org/10.1093/femsre/fux004
Van Camp P.J., Haslam D.B., Porollo A. Prediction of antimicrobial resistance in gram-negative bacteria from whole-genome sequencing data. Front. Microbiol. 2020; 11: 1013. https://doi.org/10.3389/fmicb.2020.01013
Drouin A., Letarte G., Raymond F., Marchand M., Corbeil J., Laviolette F. Interpretable genotype-to-phenotype classifiers with performance guarantees. Scientific Reports. 2019; 9: 4071. https://doi.org/10.1038/s41598-019-40561-2
Nguyen M., Long S.W., McDermott P.F., Olsen R.J., Olson R., Stevens R.L. et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J. Clin. Microbiol. 2019; 57(2): e01260-18. https://doi.org/10.1128/JCM.01260-18.
Nguyen M., Brettin T., Long S.W., Musser J.M., Olsen R.J., Olson R., et al. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumonia. Sci. Rep. 2018; 8: 428. https://doi.org/10.1038/s41598-017-18972-w